
Fundamentele Informatica 3

Antwoorden op geselecteerde opgaven uit

Hoofdstuk 11
John Martin: Introduction to Languages and the Theory of Computation

Jetty Kleijn

Najaar 2008

11.1 Show that the relation ≤ (reducibility, for languages or decision prob-
lems) is reflexive and transitive. Give an example to show that it is not
symmetric.
Recall: for two languages L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗

2, we write L1 ≤ L2 if there
is a computable function f : Σ∗

1 → Σ∗

2 such that for all x ∈ Σ∗

1: x ∈ L1 if
and only if x ∈ L2.
Reflexivity. L ≤ L always holds: take for f the identity mapping.
Transitivity. Assume L1 ≤ L2 and L2 ≤ L3, then we have to prove that
L1 ≤ L3. Let f1 : Σ∗

1 → Σ∗

2 be the reduction from L1 to L2 and let
f2 : Σ∗

2 → Σ∗

3 be the reduction from L2 to L3.
Then, for all x ∈ Σ∗

1: x ∈ L1 iff f1(x) ∈ L2 iff f2(f1(x)) ∈ L3.
The function f2 ◦ f1 obviously is computable and thus L1 ≤ L3.
Not symmetric. A simple example are L1 = {a}∗ and L2 = {Λ} ⊆ {a}∗.
The function f : {a}∗ → {a}∗ defined by f(ak) = Λ for all k ≥ 0 is com-
putable and has the property that for all w ∈ {a}∗ it holds that w ∈ L1 if
and only if f(w) = Λ ∈ L2. Thus L1 ≤ L2, but L2 ≤ L1 does not hold:
there exists no (total) function g : {a}∗ → {a}∗ such that if w 6= Λ, then
w 6∈ L1 = {a}∗.

Extras

As another example that ≤ is not symmetric we use the idea that whenever
L ≤ L′, then if L is not recursive (or recursively enumerable), then also L′ is
not recursive (recursively enumerable, respectively), see Theorem 11.4 and
Exercise 11.3. Thus L ≤ L′ implies that L cannot be harder to solve than
L′.

1

Now let L1 = {a}+ and let L2 = SA = {w ∈ {0, 1}∗ | w = e(T) for some
TM T and w ∈ L(T)}. It appears that L1 is an “easier” language than
L2. Indeed, let T0 be the (trivial) Turing machine which accepts {0, 1}+.
Note that e(T0) ∈ L2. Then L1 ≤ L2 using the reduction f(Λ) = Λ and
f(ak) = e(T0) for all k ≥ 1. Clearly, f is Turing-computable and we have,
for all ak, that ak ∈ L1 if and only if f(ak) = e(T0) ∈ L2.
Conversely, there cannot exist a reduction g : {0, 1}∗ → {a}+ from L2 to
L1 because L1 is a recursive language and L2 = SA is not recursive: the
existence of such a g would imply that we could decide membership of SA

by reducing it to L1.

Despite the suggestive notation, ≤ is not a partial ordering, because it is
not asymmetric:
Let L1 = {a2n | n ≥ 0} and L2 = {a2n+1 | n ≥ 0}. Then L1 ≤ L2 via
the reduction f1 defined by f1(a

k) = ak+1 for all k ≥ 0. Clearly ak ∈ L1

if and only if f1(a
k) = ak+1 ∈ L2. Also, L2 ≤ L1, now via the reduction

f2 defined by f2(a
k) = ak+1 for all k ≥ 0. Clearly ak ∈ L2 if and only if

f2(a
k) = ak+1 ∈ L1.

Consequently, L1 ≤ L2 and L2 ≤ L1, but L1 = L2 does not hold.
We could say that two languages (problems) are “equivalent” if they can
be reduced to one another: L1 ∼ L2 holds if L1 ≤ L2 and L2 ≤ L1. It is
now easy to see that ∼ is indeed an equivalence relation indicating that one
language is “as difficult” as the other.
See also the Exercises 11.10 and 11.11.

11.2 Given is the decision problem P2:

Given n ∈ N; is n = 2k for some k ∈ N?

Consider f : N → N defined by f(n) = 5n for all n.
a Determine a property X such that for all n ∈ N:

n = 2k if and only if f(n) = 5n satisfies X.

X is “divisibility by 10” and so P2 ≤ PX via f with PX :

Given n ∈ N; is n = 10m for some m ∈ N?

b Give a (total) computable function g : N → N which reduces PX to P2.
Define g by g(n) = k if n = 5k for some k and g(n) = 1 otherwise.
Clearly, g is computable.
Moreover, for all n ∈ N we have:
if n = 10m (a yes-instance of PX), then g(n) = 2m (a yes-instance of P2),

2

and if n is not divisible by 10 (a no-instance of PX), then
either it is not divisible by 5 and g(n) = 1 (a no-instance of P2)
or it is not divisible by 2, in which case also g(n) is not divisible by 2 (a
no-instance of P2).
Consequently n is a yes-instance of PX if and only if g(n) is a yes-instance
of P2. Thus also PX ≤ P2.

11.3 Let L1, L2 ⊆ Σ∗ be two languages such that L1 ≤ L2 and L2 is recur-
sively enumerable. Prove that L1 is also recursively enumerable.
Let f : Σ∗ → Σ∗ be a function that reduces L1 to L2 and let Tf be a Turing
machine that computes f . Let T2 be a Turing machine such that L(T2) = L2.
Consider the composite TM TfT2. When given a word x ∈ Σ∗ as input, it
transforms first x into f(x) which is input to T2 and thus accepted if and
only if f(x) ∈ L2. Since f(x) ∈ L2 if and only if x ∈ L1 it follows that TfT2

accepts x if and only if x ∈ L1.
In other words L1 = L(TfT2) and so L1 is recursively enumerable.

11.4 Let L ⊆ Σ∗ be a language such that L 6= ∅ and L 6= Σ∗.
Show that any recursive language can be reduced to L.
Let u, v ∈ Σ∗ be such that u ∈ L and v 6∈ L.
Now let L′ be a recursive language over Σ. Define f : Σ∗ → Σ∗ by

f(w) = u if w ∈ L′ and f(w) = v if w 6∈ L′.

It is immediate that, for all w ∈ Σ∗, we have that w ∈ L′ iff f(w) ∈ L.
Moreover, f is computable, because L′ is recursive.
Thus L′ ≤ L.

11.5 (see also Exercise 10.8c)
Given an (effective) enumeration of 4-tuples (n, x, y, z) consisting of positive
integers with n ≥ 3, one can build a Turing machine that tests these 4-tuples
for the equality xn + yn = zn and stops successfully as soon as the equality
is satisfied. Therefore, deciding whether this TM stops given an empty tape
as input, is the same as disproving Fermat’s last theorem.

11.6 Acc = {e(T)e(w) | T is a TM and T accepts w}.
Let L be any recursively enumerable language over some alphabet Σ.
Then L ≤ Acc which can be seen as follows.
Let T0 be a Turingmachine accepting L. Define f : Σ∗ → {0, 1}∗ by

f(x) = e(T0)e(x) for all x ∈ Σ∗.

3

Clearly f is computable (a simple application of e).
Furthermore, for all x ∈ Σ∗, we have
x ∈ L if and only if T0 accepts x if and only if f(x) = e(T0)e(x) ∈ Acc.

11.7 Let L be a language and T a Turingmachine such that L(T) = L.
Assume that the problem

Given a string w; does T accept w?

is solvable. Then L is a recursive language: to decide whether a word x ∈ L

we simply use the algorithm (Turing machine) for the given problem and
decide whether T accepts x, that is whether x ∈ L(T) = L.
Consequently, if Turing machine M is such that L(M) is not recursive, it
must be the case that the problem

Given a string w; does M accept w?

is unsolvable.

11.8 Show that for any word x ∈ Σ∗, the problem Accepts:

Given TM T and string w; is w ∈ L(T)?

can be reduced to the problem Accepts-x:

Given TM T ; is x ∈ L(T)?

To prove this we have to transform each instance (T,w) of Accepts to an
instance T ′ of Accepts-x such that w ∈ L(T) iff x ∈ L(T ′).
The function F yields, given a pair (T,w), the Turingmachine F (T,w) = T ′

which operates as follows:
given input y, T ′ begins with comparing y with x;
if y = x, then

it erases the tape,
writes w on the tape from cell 1 onwards, and
then simulates T on w;

thus T ′ accepts x if and only if w ∈ L(T)

if y 6= x, then the behaviour of T ′ is not relevant, let us say it moves to ha.
Clearly, this is an algorithmic procedure to obtain T ′ = F (T,w).
So, Accepts reduces to Accepts-x.
Since Accepts is unsolvable, it follows that Accepts-x is unsolvable.

11.9 Construct a reduction from the problem Accepts-Λ:

4

Given TM T ; is Λ ∈ L(T)?

to the problem Accepts-{Λ}:

Given TM T ; is L(T) = {Λ}?

We have to provide an algorithm which when given a TM T transforms it
into a TM T ′ such that Λ ∈ L(T) if and only if L(T ′) = {Λ}.
Let T ′ be the Turing machine which behaves as T when given input Λ and
immediately rejects every other input.
Thus L(T ′) = ∅ if Λ 6∈ L(T) and L(T ′) = {Λ} if Λ ∈ L(T).
We conclude that Λ ∈ L(T) if and only if L(T ′) = {Λ}.

11.10

a Let C = A ∪ B and D = A ∩ B. Then A = B if and only if C ⊆ D.
b Show that the problem Equivalent:

Given two TMs T1 and T2; is L(T1) = L(T2)?

can be reduced to the problem Subset:

Given two TMs T1 and T2; is L(T1) ⊆ L(T2)?

Now we can use the proof of Theorem 10.3. There, constructions are pro-
vided which, given two arbitrary Turing machines T1 and T2 yield a TM T∪

and a TM T∩ such that L(T∪) = L(T1)∪L(T2) and L(T∩) = L(T1)∩L(T2).
By a, these constructions together provide a reduction from Equivalent
to Subset: transform any instance (T1, T2) of Equivalent into the instance
(T∪, T∩) of Subset of the corresponding union and intersection TMs. Then
L(T1) = L(T2) if and only if L(T∪) ⊆ L(T∩).

11.11

a Let C = A ∩ B and D = A. Then A ⊆ B if and only if C = D.
b Show that the problem Subset:

Given two TMs T1 and T2; is L(T1) ⊆ L(T2)?

can be reduced to the problem Equivalent:

Given two TMs T1 and T2; is L(T1) = L(T2)?

We use the proof of Theorem 10.3. There, a construction is described which,
given two arbitrary Turing machines T1 and T2 yields a TM T∩ such that

5

L(T∩) = L(T1) ∩ L(T2). Thus given an instance (T1, T2) of Subset, we con-
struct T∩ from T1 and T2 and we let (T∩, T1) be the corresponding instance
of Equivalent. Then, by a, L(T1) ⊆ L(T2) if and only if L(T∩) = L(T1).

11.12

a decidable
Let T be an arbitrary TM. We have to decide whether it ever reaches another
of its states than its initial state when started with a blank tape.
Execute T with empty input,
then we know the answer and stop the procedure as soon as
T changes state at some moment; stop with answer YES
otherwise we encounter one of the following situations:
T halts (ha and hr are not considered to be states of T); stop with answer
NO
T moves its head to the right; since it still is in q0, it is in an infinite loop;
stop with answer NO
T scans cell 0 and sees in that cell a tape symbol it has seen there before;
since it still is in q0, it is in an infinite loop; stop with answer NO.
b and c are both undecidable.
SKETCH of proof: for both, this can be shown by transforming any given
TM into an equivalent one (defining the same language) with a new dummy
state (q) just before the transitions to ha. Then Accepts-Λ can be shown to
reduce to the problem of b and AcceptsSomething to the problem of c.
d and e are both undecidable.
SKETCH of proof: every Turingmachine can be transformed into one which
defines the same language and in which all finite computations consist of
an even number of steps. Then Accepts-Λ can be shown to reduce to the
problem of d, and AcceptsSomething can be shown to reduce to the problem
of e.
f and g are undecidable (HINT: every TM can be effectively transformed
into an equivalent one which for each input either stops successfully or en-
ters an infinite computation (it never crashes or enters hr), see exercise 9.11
and the proof of Theorem 11.6; then use the negations of Accepts and of
AcceptsSomething, respectively).
h and i are undecidable (HINT: T rejects input w means that the compu-
tation of T on w will eventually halt unsuccessfully: it “crashes” or enters
hr; give a transformation which given a TM interchanges crashing and suc-
cessfully halting; then use Accepts and AcceptsSomething respectively).
j and k are decidable (HINT: within 10 steps a TM cannot have seen more
than the first 10 symbols of its input).

6

l The problem Pl

given two TMs T1, T2; is L(T1) ⊆ L(T2) or L(T2) ⊆ L(T1)?

is undecidable. This is a decision problem: for every instance (T1, T2) the
answer is either “yes” if at least one of the inclusions hold or “no” if neither
of them is true. Despite the fact thatPl has instances which consist of a
pair of TMs rather than a single one, its undecidability can be proved using
Rice’s theorem:
If R is a non-trivial property for recursively enumerable languages, then the
problem PR is undecidable:

given a TM T ; does L(T) have property R?

For R we choose the property “L ⊆ {Λ} or {Λ} ⊆ L”. This is a non-trivial
property for recursively enumerable languages and so the problem PΛ:

given a TM T ; is L(T) ⊆ {Λ} or {Λ} ⊆ L(T)?

is undecidable. This problem easily reduces to Pl: The transformation F

when given an instance T of PΛ transforms it into the pair (T, TΛ), where
TΛ is a Turingmachine which accepts {Λ}: when started it moves its head
from cell 0 to cell 1 and it checks the contents of cell 1; if that is ∆, it
accepts; otherwise it rejects. Thus F is computable. Moreover, L(T) ⊆ {Λ}
or {Λ} ⊆ L(T) if and only if L(T) ⊆ L(TΛ) or L(TΛ) ⊆ L(T). That is, T is
a yes-instance of PΛ if and only if F (T) = (T, TΛ) is a yes-instance of Pl.
Since PΛ is undecidable, it follows that Pl is undecidable.

11.14 Four decision problems are given involving unrestricted grammars.
The proof of Theorem 10.9 shows that for every Turingmachine T an un-
restricted grammar GT can be constructed generating L(T). Consequently,
to each of the given problems the corresponding problem for Turingma-
chines can be reduced. Since these problems (Accepts, AcceptsSomething,
AcceptsEverything, and Equivalent) are unsolvable, the given problems are
also unsolvable.

11.15 Given is the problem WritesNonblank:

Given a TM T ;
does T ever write a nonblank symbol, when started with a blank tape?

This problem is decidable: let n be the number of states of the given T . If
we let T run on a blank tape, then one of the following cases must occur

7

within n moves: it halts (successfully or not) or it enters a state for the
second time. In the first case we can observe whether or not a nonblank
has been written. In the second case: if it has not yet written a nonblank
symbol it will never do so anymore (T has entered an infinite loop).

11.16 A “proof” is given that the problem WritesNonblank of the previous
exercise is not decidable. Find the flaw.
The construction is a reduction of WritesNonblank to the unsolvable Writes-
Symbol which does not prove anything (the reduction is in the wrong direc-
tion!).

11.17 Given is the instance of PCP obtained from the Turingmachine in
Example 11.2 with input ab. Note that ab is accepted. Thus the instance of
PCP has a solution. Give this solution.

First pair: (#,#q0∆ab#)
Instruction (pair of type 2): (q0∆,∆q1)
Matching (pairs of type 1): (a, a)
and (b, b)
and (#,#)
and (∆,∆)
Instruction (pair of type 2): (q1a, aq1)
Matching (pairs of type 1): (b, b)
and (#,#)
and (∆,∆)
and (a, a)
Instruction (pair of type 2): (q1b, bq1)
Matching (pairs of type 1): (#,#)
and (∆,∆)
and (a, a)
Instruction (pair of type 2): (bq1#, q2b∆#)
Matching (pairs of type 1): (∆,∆)
and (a, a)
Instruction (pair of type 2): (q2b, ha∆)
Matching (pairs of type 1): (∆,∆)
and (#,#)
and (∆,∆)
Termination (pair of type 3): (aha∆, ha)
Matching (pairs of type 1): (∆,∆)
and (#,#)
Termination continued (pair of type 3): (∆ha∆, ha)

8

Matching (pair of type 1): (#,#)
Finally, the pair of type 4: (ha##,#)

Both the sequence of α’s and that of the β’s equal:
#q0∆ab#∆q1ab#∆aq1b#∆abq1#∆aq2b∆#∆aha∆∆#∆ha∆#ha##.

11.18 Give a solution or show that none exists for each of the following two
instances of PCP:
a (α1, β1) = (100, 10), (α2, β2) = (101, 01), (α3, β3) = (110, 1010).
Any solution has to begin with the first pair (100, 10);
this should then be followed by a pair the second component of which starts
with a 0; only pair 2 qualifies and we obtain (100101, 1001);
once more we have to continue with pair 2 and we obtain (100101101, 100101);
the second component is now a string 101 “behind”, thus we have to con-
tinue with pair 1 or with pair 3.
In the first case we get (100101101100, 10010110) and we are stuck, because
the second component is now 1100 behind and none of the β’s fit this pat-
tern.
In the second case we get (100101101110, 1001011010) which is a mistake
because the 10th position is a 1 in the first word, but a 0 in the second word.
Thus this instance has no solution.
b (α1, β1) = (1, 10), (α2, β2) = (01, 101), (α3, β3) = (0, 101), en
(α4, β4) = (001, 0).
Each solution has to start with the first or the fourth pair.
One solution is the sequence 1,4,2: α1α4α2 = 100101 = β1β4β2.
Can you find still other ones?

11.19 Restricting PCP to instances in which the alphabet consists of at
most two symbols does not lead to a decidable problem, because the general
problem can be reduced to this simplified version by a binary encoding:
Let (α1, β1), (α2, β2), . . . , (αn, βn) be an instance of PCP with each αi, βi ∈
Σ∗ where Σ is an alphabet consisting of m ≥ 1 symbols.
We encode Σ = {a1, . . . , am} as follows: c(ai) = 0i1 for all i ∈ {1, . . . ,m}.
This encoding is extended to words by applying it to each letter in the word.
Note that it is injective, in the sense that, for all words u, v ∈ Σ∗, we have
c(u) = c(v) if and only if u = v.
Consequently we have mapped the instance (α1, β1), (α2, β2), . . . , (αn, βn)
over Σ to the instance (c(α1), c(β1)), (c(α2), c(β2)), . . . , (c(αn), c(βn)) of PCP
over the binary alphabet {0, 1}.
It is not difficult to see that the original instance has a solution if and only
if its encoding has a solution. Thus if PCP with (at most) binary alphabets

9

would be decidable, then also the general Post Correspondence Problem, a
contradiction.

11.20 In contrast to the previous exercise, restricting PCP to instances in
which the alphabet consists of one symbol does lead to a decidable problem.
Words over a unary alphabet can differ only with respect to their length.
Words of the same length are equal. This is the basis of the algorithm below.
Let Σ be an alphabet consisting of one symbol.
Let (α1, β1), (α2, β2), . . . , (αn, βn) be an instance of PCP with each αi, βi ∈
Σ∗. Assume that Σ = {0}. Thus for each l ∈ {1, . . . , n} there are l1, l2 ≥ 1
such that αl = 0l1 and βl = 0l2 .
Now first check whether there exists an l such that l1 = l2. If yes, then a
solution has been found (αl = βl).
If no, then for all l we have l1 6= l2. Now check whether l1 > l2 for all l.
If yes, then the instance has no solution (any sequence of α’s will be longer
than the corresponding sequence of β’s).
If no, then check whether l1 < l2 for all l. If yes, then the instance has no
solution (any sequence of α’s will be shorter than the corresponding sequence
of β’s).
The only remaining case is that there exist two different indices j and k in
{1, . . . , n} such that j1 > j2 and k1 < k2 and in this case the instance always
has a solution:
Let p = j1 − j2 and q = k2 − k1. Then r times the pair (αj , βj) leaves
the β-sequence r.p symbols behind, while s times the pair (αk, βk) adds s.q

symbols more to the β-sequence than to the α-sequence. Thus if we let
r = q and s = p, then the α-sequence and the β-sequence are of the same
length. Thus a solution is i1 = j, . . . , iq = j, iq+1 = k, . . . , iq+p = k, because
(0j1)q(0k1)p = (0j2)q(0k2)p.

11.21 Show that each of the following problems for context-free grammars is
undecidable. We do this in each case by a reduction from the (undecidable)
problem CFG-GeneratesAll:

Given a CFG G with terminal alphabet Σ; is L(G) = Σ∗?

a CFG-Equivalence:

Given two CFGs G1 and G2; is L(G1) = L(G2)?

Let G be a CFG with terminal alphabet Σ. Define the CFG GΣ by the
productions S → Λ and S → aS for all a ∈ Σ. Thus L(GΣ) = Σ∗. With each
instance G of CFG-GeneratesAll, we thus associate the instance (G,GΣ)

10

of CFG-Equivalence. This is clearly algorithmic, and since L(G) = Σ∗ if
and only if L(G) = L(GΣ) we have reduced CFG-GeneratesAll to CFG-
Equivalence.
b CFG-Subset:

Given two CFGs G1 and G2; is L(G1) ⊆ L(G2)?

Let G be a CFG with terminal alphabet Σ. Define the CFG GΣ as above.
Thus L(GΣ) = Σ∗. With each instance G of CFG-GeneratesAll, we associate
the instance (GΣ, G) of CFG-Subset. This is clearly algorithmic, and since
L(G) = Σ∗ if and only if L(GΣ) ⊆ L(G) we have reduced CFG-GeneratesAll
to CFG-Subset.
c CFG-Regularity:

Given CFG G and regular language R; is L(G) = R?

With each instance G with terminal alphabet Σ of CFG-GeneratesAll we
associate the instance (G,Σ∗) of CFG-Regularity. (Σ∗ is a regular language.)
This is clearly algorithmic, and since obviously L(G) = Σ∗ if and only if
L(G) = Σ∗ we have reduced CFG-GeneratesAll to CFG-Regularity.

versie 06 januari 2009

11

