
Fundamentele Informatica 3

Antwoorden op geselecteerde opgaven uit

Hoofdstuk 10
John Martin: Introduction to Languages and the Theory of Computation

Jetty Kleijn

Najaar 2008

10.6 Let L be a language.
We have to prove that L is accepted by a Turing machine if and only if there
is Turing machine which computes a function with domain L.
The “if” direction is simple: any Turing machine T which computes a func-
tion with domain L stops successfully for all words in L and for no other
words. Thus L(T ) = L.
Conversely, assume that L ∈ LRE and let T be a Turing machine such that
L(T ) = L. We modify T as follows. First we take care that the rightmost
cell left non-blank during an accepting computation can always be found
(see exercise 9.12). Then we further adapt the machine by letting it erase
the tape and go back to cell 0. Thus the resulting TM T ′ accepts exactly
the same words as T , that is the words from L, and moreover any successful
computation is terminated with the head on cell 0 of an empty tape. Hence
T ′ computes the partial function f(x) = λ if x ∈ L, and f(x) undefined
otherwise.

10.8 Describe algorithms to enumerate the given sets.
a The set of all pairs (n,m) where n and m are relatively prime, positive
integers.
This is a recursive set: to determine whether a pair (n,m) belongs to it one
could, e.g., determine their greatest common divisor; if that is 1, then (n,m)
is in, otherwise not. An enumerating algorithm could now systematically
generate the set of all pairs (n,m), for instance canonically, guided by the
sum of the elements: (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), . . .
and successively, for each pair just generated, determine (effectively!) whether

1



it satisfies the condition. If and only if it does, it appears as the next element
of the requested enumeration.

b The set of all strings over {0, 1} which contain a nonnull substring of the
form www.
This is again a recursive set and a similar method as above applies.

c The set {n | n ≥ 0 and ∃x, y, z integers such that xn + yn = zn}.
More or less as before: select an enumeration of 4-tuples (n, x, y, z), compute
for each such tuple xn + yn and zn and compare. In case of equality, n will
be the next element of the list provided it was not listed already.
HOWEVER, Fermat’s last theorem, proved by Andrew Wiles in 1995, says
that the set consists only of the elements 1 and 2: we have 11 + 21 = 31

and 32 + 42 = 9 + 16 = 25 = 52 for instance, and for no other n there exist
integers x, y, z such that xn + yn = zn. Hence, given this theorem, we could
simply write 1,2 and be done.

10.10 Given is the computable function f : N → N which is strictly increas-
ing: if i < j then f(i) < f(j). Show that the range of f is recursive, where
the range of f is {m ∈ N | ∃n such that f(n) = m}.
From the description of f we conclude that f is a total function. Given an
integer m, we can determine whether m is in the range of f by computing
f(0), f(1), f(2), . . . until we find an n for which f(n) ≥ m. If f(n) > m, for
the first such n, then m is not in the range of f ; otherwise f(n) = m and m

is in the range.

10.11, 10.18

In 10.11 unrestricted grammars are given through their productions and the
exercise is to describe the languages they generate.
In 10.18 CSG’s are to be given for these languages.

a

S → LaR: the grammar first generates the terminal a inbetween the left-
marker L and the right-marker R.
L → LD | Λ, the left-marker either disappears or produces the marker D.
Da → aaD and DR → R: the marker D moves from left to right through
the string on the way doubling every occurrence of a it passes; when it hits
R it disappears.
R → Λ: the right-marker may be erased at any time.
Example derivations:
S ⇒ LaR ⇒ aR ⇒ a

S ⇒ LaR ⇒ LDaR ⇒ LaaDR ⇒ LaaR ⇒ aaR ⇒ aa

2



S ⇒∗ LaaR ⇒ LDaaR ⇒ LaaDaR ⇒ LaaaaR ⇒∗ a4

Note that L may disappear at any moment without obstructing the deriva-
tion and it may also derive D’s while there are still other D’s present. Each
of these D’s has to “walk” to the right while doubling the a’s until it meets
R; if R disappears while there is still a D present in the string, the derivation
will not terminate successfully anymore.
The language generated is {a2n

| n ≥ 0}.

The grammar given is not context-sensitive (monotone) because of the pro-
ductions L → Λ, DR → R, and R → Λ. In order to make it monotone
we include the markers as subscripts in other symbols. We use a’s already
present in the string to “carry” the markers. This leads to the grammar:
S → a generates the shortest word a directly and
S → aLaR produces two a’s to carry L and R.
aL → aLaD doubles the first a and introduces D.
aDa → aaaD lets D pass a while doubling it.
aDaR → aaaR, if D meets R then the index disappears and the rightmost a

is doubled.
aL → a and aR → a termination.

b Similar to the above, but now we have D for doubling a’s and T for
trebling. Thus, the language generated is {an | n = 2j3k for some j, k ≥ 0}.

The grammar given is not context-sensitive (monotone) because of the pro-
ductions L → Λ, DR → R, TR → R, and R → Λ. In order to make it
monotone the markers can be turned into subscripts just as we have done
for the previous grammar.

c The language generated is {w ∈ {a, b, c}∗ | na(w) = nb(w) = nc(w)}.

The grammar given is monotone: the right-hand sides of the productions
are never shorter than their left-hand sides.

d

S → LA ∗ R: one group consisting of one A is introduced, surrounded by
the two markers L and R.
A → a: each non-terminal A represents a terminal a.
L → LI: the left-marker L introduces a marker I.
IA → AI, I∗ → A∗IJ : the I walks to the right passing A’s until it meets
a symbol ∗. For each ∗ it meets, an extra A is added to the group of A’s
just left and a new J is introduced.
JA → AJ , J∗ → ∗J , and JR → AR: each J walks to the right until it
hits R where it introduces a new A.

3



IR → A ∗ R: the I follows the J ’s it has introduced, one for each group of
A’s it has passed; these J ’s have created a new group of A’s just before R

and I adds an extra A followed by ∗ just before R.
Thus in general, given a string LAn ∗ . . . An ∗ R consisting of n groups of n

A’s we obtain LAn+1 ∗ . . . An+1 ∗ R consisting of n + 1 groups of n + 1 A’s.
LA → EA, EA → AE, E∗ → E, and ER → Λ: are used for termi-
nation, the left-marker L changes into the end-marker E which walks from
left to right through the string erasing ∗’s on the way until it meets R and
both disappear.
Example derivations:
S ⇒ LA ∗ R ⇒ EA ∗ R ⇒ AE ∗ R ⇒ AER ⇒ A ⇒ a.
S ⇒ LA ∗R ⇒ LIA ∗R ⇒ LAI ∗R ⇒ LAA ∗ IJR ⇒ LAA ∗ IAR ⇒ LAA ∗
AIR ⇒ LAA ∗ AA ∗ R ⇒ EAA ∗ AA ∗ R ⇒∗ AAAAER ⇒ AAAA ⇒∗ a4.
S ⇒∗ LAA ∗ AA ∗ R ⇒∗ LAAA ∗ AAA ∗ AAA ∗ R ⇒∗ a9.
The language generated is {an2

| n ≥ 1}.
Note that during a successful derivation a string may contain several occur-
rences of I and J , but each I will stay behind the J ’s it has itself introduced.
I’s and J ’s cannot “overtake” one another.

The grammar above is not context-sensitive (monotone) because of the pro-
ductions: E∗ → E and ER → Λ. Following the overall idea of the given
grammar we now provide an equivalent monotone grammar. We use sub-
scripts to other symbols present in the string to represent ∗’s, L and R. We
will have A∗ to represent the last A in a group. However, for the last A of
the last group the subscripted symbol AR is used. AL represents the very
first A. Moreover all “ordinary” A’s are already given as terminal a’s. The
non-terminals I and J are more or less as before, but they now immediately
represent an a (rather than just a position in the string).
S → a takes care of the shortest word.
S → ALA∗aAR for two groups of two A’s (in the old grammar LAA∗AA∗R).
AL → ALI and Ia → aI: for L → LI and IA → AI.
IA∗ → aA∗JI: for I∗ → A ∗ IJ . Note that now the J is to the left of the I.
It will follow I through the string. This is done because AR is part of the
last group of A’s and I must now first (before its J ’s start arriving) add an
a to this group and at the same time change AR to A∗ in order to create
a place for a new group after this new A∗. Consequently we also have the
new production
IAR → aA∗aAR: for IR → A ∗ R.
Ja → aJ , JA∗ → A∗J , and JAR → aAR:
for JA → AJ , J∗ → ∗J , and JR → AR.

4



AL → E, Ea → aE, EA∗ → aE, and EAR → aa:
for LA → EA, EA → AE, E∗ → E, and ER → Λ; note that in this
way the very first A walks as E to the right!

10.12 a Every derivation begins with the step S ⇒ TD1D2 after which
either each of the three symbols is rewritten into Λ (hence Λ is in the lan-
guage) or the production T → ABCT is applied. This production introduces
A’s, B’s, and C’s in equal numbers. The two productions AB → BA and
BA → AB allow one to rearrange the A’s and B’s in any order, while the
productions CA → AC and CB → BC let the C’s be shifted to the right.
The symbols D1 and D2 — originally at the right end of the string — are
crucial for successful termination (introducing terminal symbols):
D1 can be moved to the left, past C’s with CD1 → D1C on the way chang-
ing B’s into b’s with BD1 → D1b. Note that it is blocked by A’s and a’s.
Since this is the only way to rewrite B’s into terminal strings, it follows
that, if there are any B’s to the left of an A, they cannot terminate and the
derivation is not successful.
D2 can also be moved to the left, on the way changing C’s into a’s with
CD2 → D2a. This is the only way to let the C’s successfully terminate and
therefore they should have been moved to the right of the A’s and B’s.
The language generated by this grammar is {anbnan | n ≥ 0}

b Replace BD1 → D1b by B → b. Then the B can always terminate,
regardless of the positions of the A’s and a’s.

10.13 a To start with we will have productions S → ABCDS |ABCD to
generate strings with 4 types of positions in equal numbers;
BA → AB, CA → AC, DA → AD, to move A’s to the left;
CB → BC, DB → BD to move B’s past C’s and D’s to the left;
DC → CD to move C’s to the left of D’s.
Next we introduce auxiliary variables to force a form AnBnCnDn: A, B,
C, D can be changed into A1, B1, C1, D1, respectively, only if they are
in this order and only A1, B1, C1, D1 can terminate as a or b. Note that
without this intermediate step, errors may occur because a’s (and b’s) occur
in different parts of the string.
We define a new axiom S1 with productions S1 → A1BCDS |A1BCD |Λ,
to have a starter-A1 and to generate Λ.
The subscript 1 propagates from left to right through the string but on its
way it can only pass from A’s to B’s: A1A → A1A1, A1B → A1B1,
from B’s to C’s: B1B → B1B1, B1C → B1C1,
and from C’s to D’s: C1C → C1C1, C1D → C1D1, and D1D → D1D1.

5



Finally, we include the terminating productions A1 → a, B1 → b, C1 → a

and D1 → b.

Note that the grammar is monotone, except for the production S1 → Λ
which can anyway be omitted if we do not care about having Λ in the
language.

b Similar to a, but for 3 positions; note that B1 can be replaced by a or b.
S1 → A1BCS |A1BC |Λ,
S → ABCS |ABC,
BA → AB, CA → AC, CB → BC,
A1A → A1A1, A1B → A1B1, B1B → B1B1, B1C → B1C1, C1C → C1C1,
A1 → a, B1 → a | b, C1 → a.

c We have to generate words consisting of a concatenation of 3 copies of the
same word. To this aim we use two variables A and B to travel through the
word and deposit the corresponding terminal in each of the three substrings.
S → LMR,
where L, M , and R mark the beginning of each subword to be; each of them
may disappear (when this happens at the wrong moment, the derivation will
not be successful): L → Λ, M → Λ, R → Λ;
L generates a terminal and sends a messenger: L → LaA |LbB;
it travels to the right: Aa → aA; Ab → bA; Ba → aB; Bb → bB;
until it meets M at the beginning of the second copy where it leaves its
message: AM → MaA′, BM → MbB′;
it continues as A′ or B′ respectively: A′a → aA′; A′b → bA′; B′a → aB′;
B′b → bB′;
to R, at the beginning of the third copy where it leaves its message and then
disappears: A′R → Ra, B′R → Rb.

d As in b above, but now the messenger has to leave its message not at the
beginning but at the end of the middle subword. We thus change the last
four productions into: AM → MA, BM → MB, AR → aRa, BN → bRb.

10.17 In Example 10.2 we have seen a grammar generating {ss | s ∈ {a, b}∗.
It has two productions (F → Λ and M → Λ) violating the condition for
context-sensitiveness. In this exercise we do not need Λ as an element of the
language to be generated and we can thus proceed as follows.
F is replaced by A1 or B1 to mark the first symbol of the left half; similarly,
A2 and B2 rather than M are used to mark the first symbol in the right half
of the word. We thus obtain the following context-sensitive grammar:
S → A1A2 |B1B2;

6



A1 → a, B1 → b, A2 → a, B2 → b;
alternatively, the first marker symbol can produce an additional a or b, and
send the corresponding message:
A1 → A1aA |A1bB, B1 → B1aA |B1bB;
Aa → aA, Ab → bA, Ba → aB, Bb → bB;
when the messenger arrives at the second marker, this marker produces the
terminal:
AA2 → A2a, BA2 → A2b, AB2 → B2a, BB2 → B2b.

10.20 The proof of Theorem 6.1 provides constructions showing that the
family of context-free languages is closed under union, concatenation, and
Kleene *. Given context-free grammars G1 and G2 one may assume that
they do not share any variables. S1 is the axiom of G1 and S2 that of G2.⋃

: Combining the productions and adding a new axiom S with productions
S → S1 and S → S2 yields L(G1) ∪ L(G2).
· : Combining the productions and adding a new axiom S with production
S → S1S2 yields L(G1)L(G2).
∗ : Adding a new axiom S to G1 with productions S → S1S and S → Λ
yields L(G1)

∗.
The first construction (for union) can also be used for the families of RE
languages and of CSLs. Concatenation and Kleene * however need new ideas
because of the context-sensitivity in the rewriting process.
Concatenation: Let G1 be the grammar with production S1 → a and let
G2 be the grammar with productions S2 → aB, aB → Ba, b → b. Thus
L(G1) = {a} and L(G2) = {ab, ba}.
Using the above construction we obtain S ⇒ S1S2 ⇒2 aaB ⇒ aBa ⇒
Baa ⇒ baa which is not in L(G1)L(G2) = {aab, aba}.
Kleene * (for CSLs Kleene + with productions S → S1S | S1):
Let G1 be the context-sensitive grammar given by S1 → BaB, aB → Ba,
b → b. Then L(G1) = {bab, bba}.
Using the above construction we obtain S ⇒∗ S1S1 ⇒2 BaBBaB ⇒∗

BBBaa ⇒ bbbaa which is not in L(G1)
+.

10.24 = proof Lemma 10.2
Let S be a countable set and let T ⊆ S. Then T is countable.
If T is finite, there is nothing to prove (T is countable by definition).
Thus assume that T is infinite. Then also S is infinite and since it is count-
able, there is a bijection f from N to S. Thus S = {f(0), f(1), f(2), . . .}.
Let i0 be the smallest i ∈ N such that f(i) ∈ T and let, for each j ≥ 1,
ij be the smallest i ∈ N such that i > ij−1 and f(i) ∈ T . Thus T =

7



{f(i0), f(i1), f(i2), . . .} and it follows that T is countable since the function
g from N to T defined g(j) = f(ij) for all j ∈ N is a bijection.

10.25 S is an infinite set if and only if there is a bijection from S to a proper
subset of S:

First assume that S is finite. We have to show that there is no proper subset
of S to which a bijection exists from S.
If S is empty, it has no proper subset and we are done. If S consists of
only one element, then its only proper subset is the empty set and obviously
there exists no bijection from S to the empty set.
We proceed by an inductive argument and consider now a set S with n + 1
elements for some n ≥ 1 with as induction hypothesis that no set of n

elements allows a bijection to one of its proper subsets.
Now suppose that f is a bijection from S to T , a proper subset of S. Let
s ∈ S −T and g be the restriction of f to S −{s}. Since f is injective on S,
so is g on S − {s}. We have that g(S − {s}) = f(S) − {f(s)} because f is
injective. Consequently, g(S −{s}) is a proper subset of T and hence also a
proper subset of S − {s}, since s 6∈ T .
Thus g is a bijection from S−{s} to a proper subset of S−{s}, contradicting
the induction hypothesis.

Conversely, consider an infinite set S. By Lemma 10.1, S has a countably
infinite subset I = {f(0), f(1), f(2), . . .} where f is a bijection from N to
I. Let g : S → S be the function defined by g(s) = s if s ∈ S − I and
g(f(i)) = f(i + 1) for all i ∈ N. This g is a bijection from S to S − {f(0)},
a proper subset of S.

10.26 Both countability and uncountability are preserved under bijections:
Let f : S → T be a bijection.
First consider the case that S is countable. If S is finite, then T is finite. If S

is countably infinite, then there is a bijection g : N → S. Then f ◦g : N → T

is also a bijection, which implies that T is countably infinte.
Next consider the case that T is countable. Thus there exists a bijection
g : N → T . Observe that f−1 : T → S is a bijection. Consequently,
f−1 ◦ g : N → S is a bijection, which implies that S is countable.

10.27 Let S and T be two sets such that S is uncountable and T is countable.
Consider S − T . Observe that S = (S − T ) ∪ (S ∩ T ). Since S ∩ T ⊆ T ,
we know from Lemma 10.2 that S ∩ T is countable. If S − T would also
be countable, then, by Theorem 10.13, their union S = (S − T ) ∪ (S ∩ T )

8



is countable, a contradiction. Hence it must be the case that S − T is
uncountable.

10.28 Q is countable:
First observe that once we have a bijection g from N to the nonnegative
rational numbers, then we also have a bijection f from N to Q. Namely, we
let f(0) = g(0), f(2k + 1) = g(k), and f(2k) = −g(k) for all k ≥ 1.
We define a bijection from N to the nonnegative rational numbers by first
listing 0 and next the rational numbers represented by pairs of positive
integers in “canonical” order (grouped according to the increasing sum of the
elements), but leaving out those which have a greatest common divisor larger
than 1 (cf. exercise 10.8a), thus guaranteeing that each rational number
occurs exactly once:
0, (1,1), (1,2), (2,1), (1,3), (3,1), (1,4), (2,3), (3,2), (4,1), (1,5), (5,1), (1,6),
(2,5), (3,4), (4,3), (5,2), (6,1), (1,7), ...
This is similar to the walk through the infinite matrix in Figure 10.4, but
double occurrences of rationals — like on the diagonal once we have (1, 1),
or (2, 4) once we have (1, 2) — are now avoided.

10.29 We follow the Convention mentioned in Chapter 9 (page 348), that
there are two fixed infinite sets Q = {q1, q2, . . .} and S = {a1, a2, . . .} such
that for every Turing machine T = (Q,Σ,Γ, q0, δ), we have Q ⊆ Q and
Γ ⊆ S.
Let for each pair (n,m) with n,m ≥ 0, Tn,m be the set of Turingmachines
with state set in {q1, . . . qn} and tape alphabet in {a1, . . . am}. Each such
set is finite and thus countable. Since N × N is countable by Example
10.6, it follows from Theorem 10.13 that the set of all Turing machines
T =

⋃
(n,m)∈N×N

Tn,m is countable.

10.30 S is the set consisting of infinite sequences over {0, 1}. Thus each
element s ∈ S is a function from N to {0, 1} giving the symbol (0 or 1) for
each position i of S.
a With each s ∈ S we associate the subset of N which has s as its charac-
teristic funtion. So, define f : S → 2N by i ∈ f(s) if and only if s(i) = 1.
This f is a bijection:
it clearly is a function;
f is injective: assume that s 6= s′. Then there is an i such that s(i) 6= s′(i).
Consequently, s(i) = 1 if and only if s′(i) = 0 and so i ∈ f(s) if and only if
i 6∈ f(s′). So f(s) and f(s′) differ w.r.t. i and are not the same.
f is surjective: Consider T ⊆ N. Then T = f(s) with s the characteristic

9



function of T : s(i) = 1 if i ∈ T and s(i) = 0 otherwise.
It now follows immediately that S is uncountable: if it would be countable
then we would have a bijection g : N → S which — together with the bi-
jection f just defined — forms a bijection f ◦ g : N → 2N implying that the
latter set is countable, in contradiction with Theorem 10.15.

b S is uncountable using a direct (diagonalization) argument:
Suppose, to the contrary, that S can be listed as S = {s0, s1, s2, . . .}. Define
s : N → {0, 1} by s(i) = 0 if si(i) = 1 and s(i) = 1 if si(i) = 0. Then
s ∈ S, but s does not occur in the list s0, s1, s2, . . .. A contradiction with
the asumption that S = {s0, s1, s2, . . .}.

10.31 Determine whether the given set is countable or uncountable.
a The set of all sets {a, b, c} consisting of three distinct elements from N is
countable: this follows from b, see there.

b The set F of all finite subsets of N is countable. (Contrast this with 2N,
the set of all subsets of N, which is uncountable by Theorem 10.15.)
Let, for each i ∈ N, Fi = 2{0,1,...,i} be the set consisting of all subsets of
{0, 1, . . . , i}. Thus each Fi is finite (it has 2i+1 elements). Moreover, for
every finite subset T of N, there is an i such that T ∈ Fi. For example,
if k is the largest element of T , then T ⊆ {0, 1, . . . , k} which implies that
T ∈ 2{0,1,...,k} = Fk.
Hence, F =

⋃∞
i=0 Fi and thus a countable union of countable sets, which by

Theorem 10.13 implies that F is countable.
Now also a follows: the set consisting of all three-element subsets of N is a
subset of the countable set F and therefore countable (by Lemma 10.2).

c The set P of all finite partitions of N is uncountable. A partition of N

consists of a finite number of nonempty, mutually disjoint subsets of N which
together form N.
We would like to prove that P is uncountable by establishing a bijection
from the set of all subsets of N to a subset of P : with each set T we would
associate the pair {T, N − T}. This will not work however, because T or
its complement may be empty. Moreover the mapping will not be injective,
because it will yield the same pair for T and for its complement. We therefore
slightly modify this approach:
Let V = {T ∈ N | T 6= ∅ and 0 6∈ T} consist of the nonempty subsets of N

not containing 0. Note that 2V is uncountable. (The function which maps
∅ to {1} and all other subsets S ⊆ N to {s + 1 | s ∈ S} is injective; thus
2V has an uncountable subset and must therefore, by Lemma 10.2, itself be
uncountable.)

10



For T ∈ V , define g(T ) = {T, N−T}. Note that 0 ∈ N−T . It is easy to see
that g is injective. Moreover it is surjective on the set P2 of all partitions
of N consisting of two sets. Since 2V is uncountable, it follows that P2 is
uncountable. Finally, since P2 is a subset of the set of all finite partitions
of N it follows from Lemma 10.2, that also P is uncountable.

d Since the functions from N to {0, 1} correspond one-to-one with the in-
finite sequences over {0, 1}, the set of all functions from N to {0, 1} is
uncountable by exercise 10.30.

e The set of all functions from {0, 1} to N is countable:
There is a one-to-one correspondence between functions f : N → {0, 1} and
pairs (f(0), f(1)) ∈ N × N and N × N is countable.

f The set of all functions from N to N contains the set from d as subset and
is therefore uncountable (Lemma 10.2).

g The set of all nonincreasing functions from N to N is countable:
f : N → N is nonincreasing if for all i ≤ j we have f(j) ≤ f(i). Therefore, if f

is nonincreasing all values of f are bounded by f(0). Consequently, the range
of f is a finite subset {a0, a1, a2, . . . ak} of N with a0 > a1 > a2 > . . . > ak.
Thus f is fully specified once also the points n1 < n2 < . . . < nk in N

are given where the value of f “drops”: f(0) = . . . = f(n1 − 1) = a0,
f(n1) = . . . = f(n2 − 1) = a1, ... , f(nk−1) = . . . = f(nk − 1) = ak−1,
f(m) = ak for all m ≥ nk.
Now f is completely determined by the pair ({a0, a1, . . . , ak}, {n1, . . . , nk}).
Note that if k = 0, then f is the constant function f(x) = a0 for all x ∈ N

corresponding to ({a0}, ∅).
All this shows that S, the set of all nonincreasing functions from N to N,
can be seen as a subset of F × F where F is the set of all finite subsets of
N which was shown to be countable in b. As in Example 10.6, F × F is
countable. Finally, by Lemma 10.2, it follows that S is countable.

h The set of all regular languages over {0, 1} is countable according to
Lemma 10.2 and Example 10.8: it is a subset of the set of recursively enu-
merable languages which is countable.

i The set of all context-free languages over {0, 1} is countable as in h: it is
a subset of the set of recursively enumerable languages which is countable.

10.32 2N is not countable. Give a set S ⊆ 2N such that both S and 2N − S

are uncountable.
Let S = {A ⊆ N | A consists of even integers only}. This set is uncountable

11



since there exists a bijection from S to 2N: the function f defined by f(A) =
{n | 2n ∈ A}. Thus S is not countable.
Now consider 2N −S = {A ⊆ N | A contains at least one odd integer}. This
set has as a subset S′ = {A ⊆ N | A 6= ∅ and consists of odd integers only}.
S′ is not countable as follows from the bijection g from S′ to the uncountable
set 2N − {∅} defined by g(A) = {n | 2n + 1 ∈ A}. Since a countable set has
only countable subsets (Lemma 10.2), it must be the case that 2N −S is not
countable.

10.33 Show that the set of languages

L = {L ⊆ {0, 1}∗ | L 6∈ LRE and {0, 1}∗ − L 6∈ LRE}

is uncountable.
LRE is countable by Example 10.8. Consequently, by Lemma 10.2, the set

K1 = {L ⊆ {0, 1}∗ | L ∈ LRE}

of recursively enumerable languages over the alphabet {0, 1} is countable.
Since each language over {0, 1} is bijectively related to its complement in
{0, 1}∗, also the set

K2 = {L ⊆ {0, 1}∗ | {0, 1}∗ − L ∈ LRE}

is countable.
Hence their union

K1 ∪ K2 = {L ⊆ {0, 1}∗ | L ∈ LRE or {0, 1}∗ − L ∈ LRE}}

is countable (see Theorem 10.13).
Note that K1 ∪K2 is the complement of L in the set 2{0,1}∗ of all languages
over {0, 1}. By Theorem 10.15, 2{0,1}∗ is an uncountable set. Since K1 ∪K2

is countable and 2{0,1}∗ = (K1 ∪ K2) ∪ L, Theorem 10.13 implies that L is
uncountable.

versie 06 januari 2009

12


