Fundamentele Informatica 1 (I\&E)

najaar 2014
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi1ie/

Rudy van Vliet
rvvliet(at)liacs(dot)nl
college 3, 3 november 2014
2.4 The Pumping Lemma

Example 2.1.

A finite automaton for accepting
$L_{1}=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with $\left.a a\right\}$

2.4 The Pumping Lemma

Theorem 2.29.
The Pumping Lemma for Regular Languages.
Suppose L is a language over the alphabet Σ.
If L is accepted by a finite automaton $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$, and if n is the number of states of M,
then for every $x \in L$ satisfying $|x| \geq n$, there are three strings u, v, and w such that $x=u v w$ and the following three conditions are true:

1. $|u v| \leq n$.
2. $|v|>0$ (i.e., $v \neq \wedge$).
3. For every $i \geq 0$, the string $u v^{i} w$ also belongs to L.

Application of pumping lemma:

mainly to prove that a language L cannot be accepted by a finite automaton.

How?

Suppose that there exists FA M with n states that accepts L.

Apply pumping lemma, and end up with contradiction.

Suppose that there exists FA M with n states that accepts L.

Pumping lemma:
for every $x \in L$ satisfying $|x| \geq n$,
there are three strings u, v, and w such that $x=u v w$ and the following three conditions are true:

1. $|u v| \leq n$.
2. $|v|>0$ (i.e., $v \neq \wedge$).
3. For every $i \geq 0$, the string $u v^{i} w$ also belongs to L.

Suppose that there exists FA M with n states

 that accepts L.We prove:
NOT
for every $x \in L$ satisfying $|x| \geq n$, there are three strings u, v, and w such that $x=u v w$ and the following three conditions are true:

1. $|u v| \leq n$.
2. $|v|>0$ (i.e., $v \neq \wedge$).
3. For every $i \geq 0$, the string $u v^{i} w$ also belongs to L.
)

Suppose that there exists FA M with n states that accepts L.

We prove:
There exists $x \in L$ satisfying $|x| \geq n$, such that
NOT
(
there are three strings u, v, and w such that $x=u v w$ and the following three conditions are true:

1. $|u v| \leq n$.
2. $|v|>0$ (i.e., $v \neq \wedge$).
3. For every $i \geq 0$, the string $u v^{i} w$ also belongs to L.)

Suppose that there exists FA M with n states that accepts L.

We prove:
There exists $x \in L$ satisfying $|x| \geq n$, such that for every three strings u, v, and w such that $x=u v w$

NOT
(
the following three conditions are true:

1. $|u v| \leq n$.
2. $|v|>0$ (i.e., $v \neq \wedge$).
3. For every $i \geq 0$, the string $u v^{i} w$ also belongs to L.)

Suppose that there exists FA M with n states that accepts L.

We prove:

There exists $x \in L$ satisfying $|x| \geq n$, such that for every three strings u, v, and w such that $x=u v w$

NOT all of the following three conditions are true:

1. $|u v| \leq n$.
2. $|v|>0$ (i.e., $v \neq \wedge$).
3. For every $i \geq 0$, the string $u v^{i} w$ also belongs to L.

Suppose that there exists FA M with n states that accepts L.

We prove:
There exists $x \in L$ satisfying $|x| \geq n$, such that for every three strings u, v, and w such that $x=u v w$
if

1. $|u v| \leq n$.
2. $|v|>0$ (i.e., $v \neq \wedge$).
then NOT
(
3. For every $i \geq 0$, the string $u v^{i} w$ also belongs to L.
)

Suppose that there exists FA M with n states that accepts L.

We prove:
There exists $x \in L$ satisfying $|x| \geq n$, such that for every three strings u, v, and w such that $x=u v w$
if

1. $|u v| \leq n$.
2. $|v|>0$ (i.e., $v \neq \wedge$).
then
3. There exists $i \geq 0$, such that the string $u v^{i} w$ does not belong to L.

Application of pumping lemma:

mainly to prove that a language L cannot be accepted by a finite automaton.

How?
Find a string $x \in L$ with $|x| \geq n$ that cannot be pumped up!

What is n ?

What should x be?

What can u, v and w be?

Example 2.30. The language $A n B n$.

Let $L=\left\{a^{i} b^{i} \mid i \geq 0\right\}$.

Example 2.30. The language $A E q B$.

Let $L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=n_{b}(x)\right\}$.

Example 2.31.

Let $L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)>n_{b}(x)\right\}$.

Example 2.32.

$$
\text { Let } \begin{aligned}
L & =\left\{a^{i^{2}} \mid \quad i \geq 0\right\}=\left\{a^{k} \mid k \text { is a square }\right\} \\
& =\{\Lambda, a, \text { aaaa,aaaaaaaaa,aaaaaaaaaaaaaaaa }, \ldots\}
\end{aligned}
$$

Example 2.33.

Let L be the set of legal C programs.

Example 2.34. Decision problems involving languages accepted by finite automata.

1. Given an FA $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$, is $L(M)$ nonempty ?

1a. Determine reachable states.
1b. (Black box.) Use pumping lemma.

Exercise.

Let M be a finite automaton with n states and alphabet Σ. Prove the following claim:

```
L(M) is nonemtpy
L(M) contains a string x\in \Sigma* with }|x|<
```

Example 2.34. Decision problems involving languages accepted by finite automata.
2. Given an FA $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$, is $L(M)$ infinite ?

Use pumping lemma.

Exercise.

Let M be a finite automaton with n states and alphabet Σ. Prove the following claim:
$L(M)$ is infinite

$L(M)$ contains a string $x \in \Sigma^{*}$ with $|x| \geq n$

$L(M)$ contains a string $x \in \Sigma^{*}$ with $n \leq|x|<2 n$

