Natural Computing (2006) 5: 127-149 © Springer 2006
DOI 10.1007/s11047-005-4464-y

The construction of minimal DNA expressions

RUDY VAN VLIET"* HENDRIK JAN HOOGEBOOM!

and GRZEGORZ ROZENBERG'?

YL eiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels
Bohrweg 1, 2333 CA, Leiden, The Netherlands; >Department of Computer Science,
University of Colorado at Boulder, Boulder, CO, 80309, USA (*Author for
correspondence: E-mail: rvliet@liacs.nl)

Abstract. We describe a formal language/notation for DNA molecules that may con-
tain nicks and gaps. The elements of the language, DNA expressions, denote formal
DNA molecules. Different DNA expressions may denote the same formal DNA mol-
ecule. We analyse the shortest DNA expressions denoting a given formal DNA mole-
cule. We determine lower bounds on their lengths and explain how we construct these
minimal DNA expressions.

Key words: constructions, DNA molecules, formal language, minimal DNA expres-
sions

1. Introduction

Since the discovery of the structure and function of DNA molecules,
DNA has been (and still is) intensively studied by biologists and bio-
chemists. Formal study of computational properties of DNA really
began when Head (1987) defined formal languages consisting of
strings that can be modified by operations based on the way that
restriction enzymes process DNA molecules. The interest of the com-
puter science community in the computational potential of DNA was
boosted, when Adleman (1994) reported on an experiment in a biolab
that solved a small instance of the directed Hamiltonian path problem
using DNA, enzymes and standard biomolecular operations. Since
then, research on DNA computing is flourishing, see, e.g., Chen and
Reif (2004), Ferretti et al. (2005) and Paun et al. (1998).

However, not much attention is paid in the literature to possible
notations for denoting DNA molecules — exceptions are Boneh et al.
(1996) and Li (1999). In most cases, one simply uses the standard

128 R. VAN VLIET ET AL.

double-string notation (like?g:;(é) to describe a double-stranded

DNA molecule. A formal notation for RNA is considered in, among
others, Rivas and Eddy (2000).

In this paper, we describe a concise and precise notation for DNA
molecules, based on the letters A, C, G and T and three operators T,
| and | (to be pronounced as uparrow, downarrow and updownarrow,
respectively). The resulting DNA expressions denote formal DNA
molecules — a formalization of DNA molecules. We do not only
account for perfect double-stranded DNA molecules, but also for
single-stranded DNA molecules and for double-stranded DNA mole-
cules containing nicks (missing phosphodiester bonds between
adjacent nucleotides in the same strand) and gaps (missing nucleotides
in one of the strands).

Our three operators bear some resemblance to the operators used
in Boneh et al. (1996) and Li (1999), but their functionality is quite
different. The operator T acts as a kind of ligase for the upper
strands: it creates upper strands and connects the upper strands of its
arguments. The operator | is the analogue for lower strands. Finally,
] fills up the gap(s) in its argument. The effects of the operators do
not perfectly correspond to the effects of existing techniques in real-
life DNA synthesis. Yet, the operators are useful to describe certain
types of DNA molecules.

In our formal language, different DNA expressions may denote the
same formal DNA molecule. We examine which DNA expressions are
minimal, i.e., have the shortest length among all DNA expressions
denoting the same formal DNA molecule. First, we determine lower
bounds on the length of these DNA expressions. Subsequently, we
construct DNA expressions that actually achieve these lower bounds
and thus are minimal.

We have published the definitions and the most important results
in this paper earlier in Van Vliet et al. (2005). In that paper, we also
counted the number of different minimal DNA expressions for a
given molecule, and we gave a direct characterization of minimal
DNA expressions. However, due to space limitations, we had to omit
the proofs of the results.

In the present paper, we concentrate on a few central results.
Because of the more restricted scope of this paper, we can elaborate
more on the proofs. More formal details can be found in Van Vliet
(2004).

THE CONSTRUCTION OF MINIMAL DNA EXPRESSIONS 129

2. N -words and formal DNA molecules

We use the alphabet NV = {A, C, G, T} to denote the nucleotides that
DNA consists of. The four elements are called N -letters. A non-emp-
ty string over A is called an N -word.

For an N-word o, c(x) is the element-wise (non-reversed)
Watson—Crick complement of o. Thus, more formally, ¢ is a letter-to-
letter morphism (also called a coding). For example, ¢(ACATG) =
TGTAC.

The semantical basis of our formal language are formal DNA
molecules. Formal DNA molecules are strings over the set
AVA = A+ UA_-U A:t U {VJA }9 where A+ N {g_é)7 (S)v (C_})J (E)}:
A= {000+ () ()} and A = {(). (). () (1)) The elements
of A,U A UA, are called A-letters. The elements of A, and A_
correspond to gaps in the lower strand and the upper strand, respec-
tively. The symbols V and A are called nick letters. The upper nick let-
ter V represents a nick in the upper strand of the DNA molecule; the
lower nick letter A represents a nick in the lower strand.

Not all strings over Ay are formal DNA molecules. We impose
three natural conditions on the strings, which, among others, prevent
the DNA molecule represented from ‘falling apart.’

DEFINITION 1. A formal DNA molecule is a string X = x1xp--- X,
withr > 1 and for i = 1,...,r, x; € Ayn, satisfying
o ifx;e Ay, then xid A (i=1,2,...,r—1),
if x; € A_, then X,‘+1¢A+ (i =1,2,...,r— 1),

i X],Xr¢{v,A},

L] z'fxi S {V,A }, then Xi—1,Xi+1 € Ag (i:2,3,...,7’— 1).

A formal DNA molecule without nick letters is called nick free.
Examples of formal DNA molecules are

A= (1)) (H)R)E) 8
K= (1)7(6)(1)+(2)(2). e ?
6=() (@O OE) R

Both X; and X3 are nick free. We assume that if two nucleotides in
the same strand are separated by a gap (as is the case for the G and

130 R. VAN VLIET ET AL.

the C in the lower strand of X3), then they are not connected by a
(long) phosphodiester bond.

Often, we simplify the notation of a formal DNA molecule, by
‘concatenating’ consecutive symbols of A,; we then write (”":“f)
instead of (T) e (‘ﬁ) Analogously, we may concatenate consecutive
elements of A_ and consecutive elements of A.. When we simplify
the notation of a formal DNA molecule, we do not modify the formal
DNA molecule itself. In particular, it remains a string over Aga.

A non-empty sequence of elements of A, is called an wupper
A-word. Analogously, we have a lower A-word (with elements of A)
and a double A-word (with elements of 4.). An occurrence of an upper
A-word in a formal DNA molecule X is called an upper component of
X, if it is neither (directly) preceded, nor (directly) succeeded by an up-
per A-word. Hence, the upper A-word cannot be extended. Of course,
a lower component and a double component are defined analogously. In
addition to these three types of components, the nick letters occurring
in X are components by themselves. An upper component or a lower
component may also be called a single-stranded component of X.

For a formal DNA molecule X, the decomposition of X is defined

as the sequence x|,...,x; with k> 1, such that X =x|---x} and
each x! is a component of X. For the ease of notation, we will in gen-
eral write x/ - - - x)_instead of x{,...,x}.

For example, the decompositions of the formal DNA molecules
X1, X> and X3 are

ACATG
X =
(TGTAG

X2:<?)V<E§)A<1)(i}) (with k = 6), and

5= (EENE) oame-a

By definition, an upper component of a formal DNA molecule X
cannot be succeeded by a lower component and vice versa, and nick
letters occurring in X must be preceded and succeeded by a double
component. This implies that the decomposition of X is an alternating
sequence of double components on the one hand and other types of
components on the other hand.

) (with k = 1),

THE CONSTRUCTION OF MINIMAL DNA EXPRESSIONS 131

For example, the decomposition of X, consists of a double compo-
nent, an upper nick letter, a double component, a lower nick letter, a
double component and an upper component, respectively.

We define three functions on formal DNA molecules. Let X=Xx;...
x, for some r > 1 be a formal DNA molecule. Then L(X)=x; and
R(X)=x,. Hence, the functions L and R give the leftmost symbol and
the rightmost symbol of a formal DNA molecule. Further, |X|,
counts the A-letters occurring in X. For example, L(X>) = (}),
R(X>) = (9) and |X3|, = 5.

3. DNA expressions

The elements of our language are called DNA expressions. The
semantics of a DNA expression E is a formal DNA molecule,
denoted by S(E). In this paper, we will describe the syntax and
semantics of a DNA expression in words and by means of examples.
For a formal definition, we refer to (Van Vliet, 2004).

DNA expressions are the result of applying the three operators T,
| and | to basic N-words. In general, the operator | can have any
number n > 1 arguments ¢, ...,&,, which may be N-words or DNA
expressions. The result of applying T to these arguments is the DNA
expression (T & ---¢,). It is called an T-expression. Analogously, we
may have a |-expression (| & ---¢,). The operator | can have only
one argument &, which may again be an A-word or a DNA expres-
sion, yielding an [-expression (] &).

Hence, the set of all DNA expressions is a language over the
alphabet MU {1,],], (,)}. The length of a specific DNA expression E
is defined as the number of its symbols and is denoted by |E|. The
outermost operator of a DNA expression is (the occurrence of) the
operator which has been performed last. For example, the outermost
operator of an T-expression is T. All other occurrences of operators in
a DNA expression, i.e., the occurrences in the argument(s) of the out-
ermost operator, are called inner occurrences.

The effect of T is the following: (1) for each argument that is an
N-word «, it produces an upper A-word (f), (2) it removes all upper
nick letters occurring in its arguments, and (3) it connects the upper
strands of consecutive arguments.

Let us use S*(g;) to denote the formal DNA molecule correspond-
ing to an argument €; of T. Then by step (1),

132 R. VAN VLIET ET AL.

%, if ¢ is an M-word o;,
S+(81’) = <_)
S(e;), if & is a DNA expression.

Step (3) requires that for i=1,...,n—1, the upper strand of the mole-
cule X; =S8"(¢;) extends at least as far to the right as the lower
strand: R(X;) must not be an element of A_. Analogously, if
Xiv1 = S (ei11), then L(X;,,) must not be an element of A_. Other-
wise, there would be a gap in the upper strand ‘between’ X; and X, 1,
and we would not be able to connect the upper strands. Such natural
requirements are tedious to formalize, which is why we omit a full
formal definition of DNA expressions.

Lower nick letters that occur in the arguments of | are not re-
moved. On the contrary, if both R(X,) and L(X;:) are elements of
A, then T introduces a lower nick letter between X; and X; .. Thus,
the lower strands of consecutive arguments are not connected.

The simplest T-expression is of the form ({ «;) for an N-word «;.
Its semantics is the formal DNA molecule (Of) Figure 1(a) shows the
effect of T for two less trivial examples. For the ease of understand-
ing, we replaced the arguments of T that are DNA expressions by
pictorial representations of the corresponding DNA molecules. The
result of the operator is depicted in the same way. For example, the
first 7-expression has three arguments: a DNA expression, an N -word
and another DNA expression, respectively.

Although the DNA molecules corresponding to ?g’%T and A(é have
matching sticky ends, (7 ?g’%T Ao) is not a DNA expression, because
L((y) (E’)) € A_. Hence, the operator T does not account for anneal-
ing. Analogously, (T 25, ,9) is not a DNA expression.

The effect of the operator | is analogous to that of 7. Instead of
upper strands, however, it involves lower strands. This is illustrated in
Figure 1(b).

s((1G a1 &)= &6 st D))= @

s((br e) = g »
s (¢ TEAT)) = desrecnt 0

Figure 1. Examples of (a) the effect of the operator T; (b) the effect of the operator |;
(c) the effect of the operator .

THE CONSTRUCTION OF MINIMAL DNA EXPRESSIONS 133

Finally, the operator | complements its argument: it provides a
complementary nucleotide for every nucleotide that is not yet comple-
mented. Each nucleotide added is connected to its direct neighbours.
The operator does not introduce or remove nick letters. The argu-
ment of | may be any N-word or any DNA expression. If the argu-
ment is an A-word o, then it is interpreted as (] «;). Hence,

(o)) = (o):

Figure 1(c) illustrates the effect of [. A complete DNA expression
denoting the formal DNA molecule from this example is

E= (] (L T({1 (T OAT(L (T G)(T ON(T (T AT T))).- (4)
It is the result of the step-by-step construction from Figure 1.

We say that a formal DNA molecule X is expressible, if there
exists a DNA expression E with S(E) = X. Unfortunately, there exist
formal DNA molecules that are not expressible. In fact, we have:

THEOREM 2. A formal DNA molecule is expressible, if and only if it
does not contain both upper nick letters and lower nick letters.

Hence, a formal DNA molecule is expressible, if and only if either
it does not contain any nick letters, or it contains only upper nick let-
ters, or it contains only lower nick letters. Thus, the molecules X; and
X5 from (1) and (3) are expressible, because they do not contain any
nick letters. Also, the molecules X = (Af:) () V(E) and
Xs= (1)) AR E) A(’%‘) are expressible, because X, contains
only an upper nick letter and X5 contains only lower nick letters.
However, the molecule X, from (2) is not expressible, because it con-
tains both an upper nick letter and a lower nick letter.

We conclude this section with some remarks on the choice of the
operators. Obviously, there are many possible choices for operators
that can be used to construct DNA expressions. Our choice of opera-
tors was based on two considerations: (1) the basic two components
of a double-stranded DNA molecule are the two strands, and (2) the
operators we consider should obey some notion of locality.

In the case of the operators T and |, ‘locality’ means that they act
on one of the strands — in particular, | seals (repairs) the nicks only
in the upper strand, while | seals the nicks only in the lower strand.

134 R. VAN VLIET ET AL.

Note that applying both T and | (in any order) to one argument will
seal any existing nick.

In the case of |, ‘locality’ means that the string of nucleotides fill-
ing in a gap gets also properly connected (bonded) to its neighbours,
while the pre-existing nicks are not sealed.

4. The length of a DNA expression

Different DNA expressions may denote the same formal DNA mole-
cule. Such DNA expressions are called equivalent. In fact, for each
expressible formal DNA molecule X, there exist infinitely many DNA
expressions denoting X. For example, it is easily verified that if £ is
an T-expression denoting X, then so is (T E). We can repeat this con-
struction arbitrarily many times.

We will examine the minimal length of DNA expressions denoting a
given formal DNA molecule. For all types of expressible formal DNA
molecules, we will also describe the DNA expressions that achieve this
length. Before we do so, we make an elementary observation:

LEMMA 3. Let E be a DNA expression denoting a formal DNA mole-
cule X, and let p be the number of operators occurring in E. Then
Bl =3 p+ X,

Because each occurrence of an operator is accompanied by an
opening bracket and a closing bracket, the term 3 - p accounts for the
operators and the brackets in E. Consequently, |X]| , counts the N -let-
ters occurring in E. Note that this number only depends on X, and
not on the specific DNA expression E. Indeed, for the DNA expres-
sion E from (4), the number p of operators is 10, the number of A-
letters in X = S(E) is 8 and |E| =3-10 + 8 = 38.

5. Lower bounds for the length of a DNA expression

We first examine lower bounds for the length of a DNA expression E
denoting a formal DNA molecule X. These lower bounds will be
expressed in terms of some simple counting functions of X. We now
introduce these counting functions.

It follows from the definition of a DNA expression that both upper
components and /ower nick letters are the result of an occurrence of
the operator 7. Therefore, such components are called T-components.
Analogously, lower components and upper nick letters are called |-
components.

THE CONSTRUCTION OF MINIMAL DNA EXPRESSIONS 135

Recall that the decomposition of a formal DNA molecule is an
alternating sequence of double components on the one hand and
other types of components on the other hand. If we disregard the
double components, then we only have a sequence of other types of
components, which are T-components and |-components. A (maxi-
mal) series of T-components is succeeded by a (maximal) series of
|-components, which in turn is succeeded by a (maximal) series of
T-components, and so on. We are interested in these maximal series,
which we call primitive 1-blocks and primitive |-blocks, respectively. A
formal definition of these blocks also includes the double components
occurring in the molecule:

DEFINTION 4. Let X be a formal DNA molecule and let x| - - - xj_ for
some k > 1 be the decomposition of X. A primitive T-block of X is a non-
empty substring X = x,, ---x, of X, where 1 < ap < a; <k, such that
e X, contains at least one T-component,
X does not contain any |-component,
— either ag=1 (hence X is a prefix of X),
—or ag > 2 and x;rl is a |-component,
o — cither ay=k (hence X is a suffix of X),
—or a; < k-1 and xglﬂ is a |-component.

Note that a primitive T-block starts with the double component
preceding the series of T-components (if such a double component
exists) and ends with the double component succeeding the series of
T-components (again, if such a double component exists). The defini-
tion of a primitive |-block is completely analogous.

In Figure 2, we have indicated the primitive T-blocks and the primi-
tive |-blocks of a certain formal DNA molecule X containing upper nick
letters. The o,’s occurring in this picture denote the N'-words determin-
ing the upper, lower and double components of X. For example, the last

primitive |-block of X is X} = (c{i}ﬁ)) v(c’@lfﬂ) (a;)
We define three counting functions on formal DNA molecules:
DEFINITION 5. Let X be a formal DNA molecule.
o By(X) is the number of primitive 1-blocks of X.

1
* B|(X) is the number of primitive |-blocks of X.
o ny(X) is the number of double components of X.

136 R. VAN VLIET ET AL.

For the formal DNA molecule X from Figure 2, we have
B (X) =3, B|(X) =4 and ny(X) = 10.
Note that, unless a formal DNA molecule X is of the form

(A)for an N-word «, either By(X) > 0, or B|(X) >0 (or both).

c(oa)
Because primitive T-blocks and primitive |-blocks alternate in a
formal DNA molecule, we have

LEMMA 6. For each formal DNA molecule X, B;(X) —1< B|(X) <
Bi(X)+ 1.

Because the effects of the operators T and | are symmetric, we can
also derive symmetrical results for T-expressions and |-expressions. In
some later results, we will refer to this symmetry rather than fully
stating a symmetrical claim.

When a formal DNA molecule X is denoted by a DNA expression
E, the values of the counting functions for X can be related to those
for the arguments ¢; of F.

LEMMA 7. Let E be a DNA expression, and let X = S(E).

(1) If E= (1 ¢& - -¢,) for some n > 1 and N-words and DNA expres-

sions €1, ..., &y, then let, for i=1,...,n,X; = 8" (&).
B|(X) < B|(X1) + -+ B|(Xn), (5)
ni(X) <np(X1) + - +np(X). (6)
(2) If E={| & - -¢,) for some n > 1 and N-words and DNA expres-
Sions €y, ..., &, then ... (symmetric to Claim 1).
a1VaeVog Q4 05| [ar g 09 Qi 011M012 (13 01405
[1__as [L 1 [1 Q6 (@)
{1 {2 {3
(b)
(c)

! i
XO Xl

Figure 2 Primitive T-blocks and primitive |-blocks. (a) An example formal DNA mol-
ecule X that contains (upper) nick letters. (b) The primitive T-blocks of X; note that
the upper nick letters are not part of these blocks. (c) The primitive |-blocks of X.

THE CONSTRUCTION OF MINIMAL DNA EXPRESSIONS 137

(3) If E= (] Ei) for a DNA expression Ey, then let X, = S(E)).

By (X) < By(X1), (7)
B|(X) < B|(X1), (8)

As an illustration of Claim 1, consider

E=(T (LT o) (1 (] oa) oz (] ota)) o5 (] x6))
(LT o) as (T oo) (T (T otno)onn)) (Toua(lous) (Jouaa))). (10)

We have depicted this DNA expression and the resulting formal
DNA molecule in Figure 3. In this case, =3 and

BL(X):2<2+1+0,
m(X)=7<4+3+42

Proof

(1) Recall that the operator T removes the upper nick letters occur-
ring in X7,..., X, and connects the upper strands of these molecules.
The latter action may introduce lower nick letters.

If all |-components in a primitive |-block of an X; are upper nick
letters, then we lose this block when we remove the upper nick letters.
The introduction of a lower nick letter (which is an T-component) has
no effect on the primitive |-blocks. This explains inequality (5).

By the removal of an upper nick letter, the two double compo-
nents preceding and succeeding it merge into one. Hence, we lose one
double component. A lower nick letter is introduced between X; and
X;+1, if and only if both the last component of X; and the first com-
ponent of X;,; are double components. This implies that the connec-
tion of the upper strands of X7,..., X, does not affect the number of
double components. We conclude that inequality (6) holds.

(3) Theoperator | complements thesingle-stranded componentsof X7.

If all T-components in a primitive T-block of X are upper compo-
nents, then we lose this block. Moreover, suppose that two primitive
T-blocks are separated by a primitive |-block in which all |-compo-
nents are lower components. When these lower components are
complemented, the primitive |-block disappears and the two primitive

138 R. VAN VLIET ET AL.

e e | e N

T | Q1Vag Q3 04 Qg | %4 jagVaio Q11| [Q12 Qi3 al4|

[a5 Qg A
h,—/ A ~ ” A ~ 4

N — ’ s ~

— Q1 Q2 Q3 04 [as a7 Qg Q10 Q11 Q12 013 Q14

[Qs A [L_a |

~ J s
-~ ~

Figure 3. Pictorial representation of the example T-expression E with S(E)=X for
which B|(X) and n;(X) are calculated (see equation (10)). The primitive T-blocks and
the primitive |-blocks of the formal DNA molecules involved are also indicated.

T-blocks merge into one. Both effects contribute to inequality (7).
Analogously, we have inequality (8).

If X; consists only of a single-stranded component, ie., if
ni(X;) =0, then X consists only of a double component:
n(X)=1=ny(X;)+ 1. In all other cases, when a single-stranded
component is complemented, it merges with an existing, adjacent dou-
ble component. This does not increase the number of double compo-
nents. On the contrary, if a single-stranded component is both
preceded and succeeded by a double component, then these double
components merge into one and we lose a double component. Hence,
inequality (9) is certainly valid. O

We can now formulate lower bounds on the lengths of DNA
expressions:

THEOREM 8. Let E be a DNA expression, and let X = S(E).

(1) If E is an T-expression, then |E| >3 +3 - B|(X) + 3 - ni(X) + | X] 4.
(2) If Eis a |-expression, then |E| > 3+ 3 - Bi(X) + 3 - nj(X) + [X] 4.
(3) If E is an [-expression, then |E| >3- Bi(X) + 3 - ni(X) + | X] 4,

|E] >3- B(X) +3-ny(X) +|X] 4

The term 3+ 3 - B|(X) occurring in Claim 1, the term 3 + 3 - B;(X)
occurring in Claim 2, and the terms 3 - B;(X) and 3 - B|(X) occurring
in Claim 3 correspond to occurrences of the two operators T and |.
The term 3 - n;(X) occurring in all claims corresponds to occurrences
of the operator |, which are needed to obtain the double components
of X. For example, an T-expression denoting a formal DNA molecule
X contains at least (1+ B|(X)) occurrences of T and | together, and at
least n;(X) occurrences of |.

THE CONSTRUCTION OF MINIMAL DNA EXPRESSIONS 139

Proof. By induction on the number p of operators occurring in E.

If p=1, then E is (T o), (] o) or (] o) for an AN-word «;. For
these DNA expressions, the applicable claims hold by definition.

Let p > 1, and suppose that the claims hold for all DNA expres-
sions containing at most p operators (induction hypothesis). Let E be
a DNA expression that contains p+ 1 operators.

o If E=(]¢ " --¢,) for some n > 1 and N-words and DNA
expressions ¢p,...,&, then let, for i=1,...,n,X; =S (g). Clearly,
each argument g; contains at most p operators.

For an A-word ¢;, X; is an upper A-word and by definition,

leil = [Xil 4 =3 B (X)) + 3 - n(Xi) + | Xi| 4.
For an T-expression g;, by the induction hypothesis,
leil =3+ 3- B (Xi) + 3 n(Xi) + [Xi| 4
>3. BL(X,) +3- I’ZI(X,) + |Xi|A.
For a |-expression g;, by the induction hypothesis and Lemma 6,
leil >3+ 3 By(Xi) +3-np(Xi) + [Xil 4
>3- B(Xi) + 3 - ny(X) + [Xi] 4.
Finally, for an [-expression g;, by the induction hypothesis
lei| >3- B (Xi) + 3 n(X;) + | Xi 4-
Now, by Lemma 7(1),
|E| =3+ et] + -+ [ea] =343 B(X) +3-ny(X) + [X] 4.
o If E= (] E) for a DNA expression Ej, then let X; = S(E)). E|

contains p operators. As in the case for an -expression E, by the
induction hypothesis,

|E1] >3- B(X1) + 3 np(X1) + [X1 4.

We can now apply Lemma 7(3):
|E] =3+ |Ei| =23 B|(X) 43 n(X) + [X] 4

140 R. VAN VLIET ET AL.

6. Minimal DNA expressions for a nick free molecule

We are not just interested in lower bounds on the lengths of DNA
expressions; we also want to construct the shortest DNA expressions
denoting a given formal DNA molecule. A DNA expression E is
called minimal, if for every equivalent DNA expression E', |E'| > |E|.

We first consider nick free formal DNA molecules. These consist
only of upper components, lower components and double components.
By Theorem 2, each nick free formal DNA molecule is expressible.

For a perfect double-stranded molecule, it is easy to construct a
minimal DNA expression:

THEOREM 9. If X = (C(“all)> for an N-word oy, then the only minimal

DNA expression denoting X is E = (] a1).

For nick free formal DNA molecules X with at least one single-
stranded component, the construction of minimal DNA expressions is
more involved. Because the operator | complements its argument, there
does not exist any [-expression denoting X. We now focus on the con-
struction of minimal T-expressions. We will sometimes refer to the anal-
ogous definitions and constructions needed for minimal |-expressions.

Intuitively, upper components ((f) of X result when T has argu-

ments that are A-words o;, and double components <C(°;l_)) of X

can be produced efficiently by arguments of the form (] o;). The
lower components of X, however, require a special treatment. For
them, we define a generalization of the primitive |-block. We use
this to partition X into substrings containing lower components and
substrings not containing lower components.

Note that each |-component of a nick free formal DNA molecule
is in fact a lower component. Therefore, in the context of nick free
formal DNA molecules, we will use the term primitive lower block in-
stead of primitive |-block. This should not give rise to confusion.

DEFINITION 10. Let X be a nick free formal DNA molecule. A lower
block of X is a substring of X which both starts and ends with a primi-
tive lower block. A lower block partitioning of X is a sequence
Yo, X1, Y1,..., X, Y, for some r > 0 such that

e X=YoX,Y,---X,Y,, and

THE CONSTRUCTION OF MINIMAL DNA EXPRESSIONS 141

o forj=1,...,r,X;is a lower block of X, and
e for each primitive lower block Xy of X, there is a j with 1 <j <,
such that X, is contained in X;.

Clearly, if a lower block starts and ends with the same primitive
lower block, then it is a primitive lower block. This is the case for
all three lower blocks in the lower block partitioning depicted in
Figure 4(a). In general, however, a lower block may contain more
than one primitive lower block. An example is lower block X in
Figure 4(b).

A lower block partitioning of X is a partitioning of X based on
(disjoint) lower blocks, which together contain all primitive lower
blocks. As each lower component occurs in a primitive lower block of
X, the lower blocks also contain all lower components of X. Hence,
the substrings Y; in a lower block partitioning only contain upper
components and double components of X.

Usually, we will write YyX;Y,---X,Y, instead of Yy, X,
Yi,...,X,, Y, to describe a lower block partitioning. Of course, an up-
per block and an upper block partitioning of a nick free formal DNA
molecule are defined analogously.

If the first primitive lower block of a nick free formal DNA mole-
cule X is a prefix of X, then the substring Y, occurring in the defini-
tion of a lower block partitioning is empty. Analogously, the
substring Y, may be empty. In particular, if X contains at least one
lower component, but does not contain any upper component, then it
is easily verified that the only primitive lower block of X is X itself.
Consequently, the only lower block partitioning of X is Yo XY, where
Yy = Y| = A (the empty string). This is depicted in Figure 5(a).

On the other hand, if X does not contain any lower component,
then it certainly does not contain any primitive lower block. Hence,

\ﬂ\ Qg | [og] [ag a7 asg) [a10 €11 €12 013 14 |16 17 18
Qa3 as [1 Qg [a5 I

v ~ Jv\ ~ AN ~ o ~ ‘h/_/

Yo X1 Y1 Xo Y X Y3 (a)

\ﬂ‘ az| oy [ag a7 ag| [0 011 Q12 013 O14] [Gi16 017 (18
a3 as [1 Qg [L 1 ais [

v ~ 7\ ~ 7\ ~ Ah/_/

Yo X1 Y X Y2 (b)

Figure 4. Two different lower block partitionings of a nick free formal DNA mole-
cule X. (a) The partitioning based on the three primitive lower blocks Xj, X> and X;
of X. (b) A partitioning based on two lower blocks X; and X, of X.

142 R. VAN VLIET ET AL.

[aa] Jag] Jag] ap ay 03 ag
aq Qa3 Qas ar |

——————
Yo = A X, v, = (@ Yo (b)

Figure 5. The (unique) lower block partitionings for two special types of nick free
formal DNA molecules X. (a) X does not contain any upper component and contains
at least one lower component. (b) X does not contain any lower component.

the only lower block partitioning of X is Yy=X (i.e., r=0).
Figure 5(b) shows an example of this.

We consider the number of primitive upper blocks and primitive
lower blocks of a lower block:

LEMMA 11. Let X be a nick free formal DNA molecule and let X, be
a lower block of X. Then By(X,) = B|(X;) — 1.

We relate the values of B and n; for a nick free formal DNA
molecule X to the values for the substrings in a lower block partition-
ing of X:

LEMMA 12. Let X be a nick free formal DNA molecule and let
Yo X1 Y- X, Y, for some r > 0 be a lower block partitioning of X.

(1) B|(X)=B|(X;)+---+B|(X,), and for j=0,1,...,r,B|(Y;) =0.
(2) n(X) =n(Yo) +ny(Xy) +n (Y1) + -+ n(X,) +ny(Y)).

It is instructive to compare the equalities in this result to the
inequalities in Lemma 7(1).

We are now ready to construct minimal DNA expressions for nick
free formal DNA molecules containing single-stranded components.

THEOREM 13. Let X be a nick free formal DNA molecule which con-
tains at least one single-stranded component, and let x| - -- x| for some
k > 1 be the decomposition of X.

(1) IfBT(X) > BL(X), then
o let YoX1Y1...X.Y, for some r > 0 be an arbitrary lower block
partitioning of X,
e for j=1,...,r, let E; be an arbitrary minimal DNA expression
denoting Xj;
o forj=0,1,...,r, let Yj:x’al_...xg/_forsomeq,-z 1 and b; < k;
e forj=0,1,...,rand fori=aj,...,b;, let

THE CONSTRUCTION OF MINIMAL DNA EXPRESSIONS 143

ol if x\ = (Oj) foran N -word o;
& —

(Toy) ifx;= (C(ﬁi)) foran N-word a;.
Now,

E: <T Sao . 'SboElga] ...gbl ...Ergar ”'Sb,A>

is a minimal T-expression denoting X, and
|E] =3 +3- B (X)+3-n(X)+ |X] 4
(2) If B|(X) > By(X), then ... (symmetric to Claim 1).

Indeed, the minimal DNA expressions E described in this result
achieve the applicable lower bounds from Theorem 8. We will see la-
ter that the minimal DNA expressions E; occurring in Claim 1 can be
recursively constructed by Claim 2, and vice versa.

Note that if B;(X) = B|(X) > 1, then we can construct both mini-
mal T-expressions and minimal |-expressions denoting X. If on the
other hand, B;(X) > B|(X), then by Theorem 8(2), each |-expression
denoting X is longer than the T-expression described in Claim 1. In
that case, each minimal DNA expression is an T-expression. Analo-
gously, if B|(X) > B;(X), then each minimal DNA expression denot-
ing X is a |-expression.

All minimal T-expressions and |-expressions denoting a nick free
formal DNA molecule can be obtained by the construction from
Theorem 13. The result only depends on the lower block partition-
ing (for a minimal T-expression) or the upper block partitioning
(for a minimal |-expression) that we choose. The construction (of
one minimal DNA expression) takes a time linear in the length
of X.

As an example, we again consider the nick free formal DNA mole-
cule X from Figure 4, for which B;(X) =4, B|(X) = 3 and n(X) = 9.
Because B(X) > B|(X), a minimal DNA expression denoting X must
be an T-expression.

We arbitrarily choose the lower block partitioning from
Figure 4(b), based on two lower blocks X; and X,. We now recur-
sively determine minimal DNA expressions E, and E, denoting X
and X,, respectively. These minimal DNA expressions become argu-
ments of the T-expression E we are constructing, together with

144 R. VAN VLIET ET AL.

N-words o; and J-expressions (] o;) for the upper components and
double components of X which are in Yy, Y and Y>:

E = (1T o Eyon1(] ooz Eroz (] ous)).

Because B;(X;) = 1<2 = B|(X)), E; must be a |-expression, which is
constructed in an analogous way: the only upper block partitioning of
X, is YLOX’M Y11, as shown in Figure 6. We determine a minimal
DNA expression Ej; for X, which is, in turn, an T-expression:

Evy = (1 (] ae)ar(] as))-
We then get

Ey = (| (] aa)oa(] aaos(T (] as)or (] as))owo(T erro))-

The minimal DNA expression E, is relatively easy to construct:
Ey = (L (T ana)ous(] auie))-

Consequently,

E=(T o (| (Toa)os (] ou)as (T (] ae) a7 (T ag)) o9 (T ota0))
Oﬂu(l 0612> o13 (l <I 0614> d1s <I 0616>> 17 (I 0618> >

Indeed,
|E| :39—|—|X\A:3+3-BL(X)+3-nI(X)—|—\X]A.

Proof of Theorem 13: The two claims are proved simultaneously, by
induction on the lower of B;(X) and B|(X). Recall that there does not
exist any [-expression denoting X.

All steps of the proof are analogous for both claims, and we focus
on Claim 1. Indeed, for each nick free formal DNA molecule, there
exists at least one lower block partitioning. It follows from the defini-
tion of a lower block partitioning that the indices a; and b; and the
arguments g; are well defined.

YI,O Yl,l Yi,l
Ve s ~ 7 ” N e N
az] [og] [og ar ag| [aio
a3 as [1 Qg

Figure 6. The (unique) upper block partitioning of the lower block X; from Fig. 4(b).

THE CONSTRUCTION OF MINIMAL DNA EXPRESSIONS 145

e If Bi(X)> B|(X) =0, then the only lower block partitioning of
X is Yo=X (see Figure 5(b)). Hence, we do not need any minimal
DNA expression E;. It follows from the definition of the ¢&’s that

= (] &4 -+ - &p,) 1S 1ndeed a DNA expression denoting Y, =X, and that

|E| =343 n(X) + X[, =343 B(X) +3-n(X) +[X] 4

By Theorem 8(1) and (2), there does not exist a shorter T-expression
or |-expression denoting X.

e Let p > 0, and suppose that for each nick free formal DNA
molecule X with at least one single-stranded component and either
B|(X) < p or Bi(X) < p, both claims are valid (induction hypothesis).

Now, let X be a nick free formal DNA molecule for which
Bi(X) > B/(X) =p+1, and let YoX,Y;---X,Y, be an arbitrary lower
block partitioning of X.

By Lemma 11, for j=1,...,r, Bj(X;)=B,(X;)—1 < B|(X) — 1=p.
Now, by the induction hypothesis, we can construct a minimal |-
expression E‘ denoting X, for which

|E| =3+3B(X)) +3-m (X)) + [Xjl 4

=3-B|(X)) +3-n(X)) + [X)| 4.
Of course, an arbitrary minimal DNA expression E; denoting X; has
the same length.

We can now prove that £ is a DNA expression denoting X. More-
over, forj=0,...,r,

b;
Dlel =3 m(X)+ |
and by Lemma 12,

|E]—3+ZZ\8,]+Z!E_3+Z (3-ny(Y) +1Y;14)

Jj=0 i=q;

+Z3 By(X)) +3 - m (X)) +[Xj|)

:3+3'Bl()+3”I(X)+|X|A

146 R. VAN VLIET ET AL.

By Theorem 8(1) and (2), there does not exist a shorter J-expression
or |-expression denoting X. O

7. Minimal DNA expressions for a molecule with nicks

To construct minimal DNA expressions for an expressible formal
DNA molecule X containing nick letters, we first decompose X into
nick free pieces and nick letters. We call the result the nick free
decomposition of X. In Figure 7, we have depicted the nick free
decomposition ZipZopZspaZy of a formal DNA molecule containing
three lower nick letters and no upper nick letters.

A DNA expression E is called operator-minimal, if for every equiv-
alent DNA expression E’ with the same outermost operator, |E’| >
|E|. For example, consider the formal DNA molecule Z,, for which
B(Z,) = 1, B|(Z,) = 2 and ny(Z,) = 4. The (-expression

Ey = (T (1 (] as)ae(] o7))as (L (T oo)ouro (T o11))),

which denotes Z, and has length
|Ea| =21+ |Zs| g = 343 B|(Z2) + 3 - ni(22) + |22 4,

is operator-minimal, because by Theorem 8(1), there can be no short-
er T-expression denoting Z,. However, because B|(Z,) > Bi(Z>), E; is
not minimal. As we observed after the statement of Theorem 13, each
minimal DNA expression E), denoting Z, is a |-expression, which has
length

We are in particular interested in operator-minimal T-expres-
sions and |-expressions denoting nick free formal DNA molecules.
These operator-minimal DNA expressions appear to be con-
structed in exactly the same way as the minimal T-expressions and
l-expressions for nick free formal DNA molecules, which we have
seen in the previous section. In particular, they are also based on
lower block partitionings and upper block partitionings. The only
difference is that operator-minimal T-expressions and |-expressions
can be constructed for every nick free formal DNA molecule, and
not just for formal DNA molecules X satisfying certain conditions
on By(X) and B|(X).

THE CONSTRUCTION OF MINIMAL DNA EXPRESSIONS 147

VA Zy Z3 Zy
Ve % ~ 7 % ~ 7 % ~ ~N
a) a3 g 5] |7 ag Q9| |01 Q12 13 Q14 05 016 Q17
[2%) A o7 [] an A [LT 1 _.a

Figure 7. A formal DNA molecule X containing lower nick letters. The nick free
decomposition of X is Zip Zop Z3p Za.

We now describe the minimal DNA expressions denoting express-
ible formal DNA molecules containing nick letters. We only give the
formulation for molecules with lower nick letters, as the formulation
for the case with upper nick letters is completely analogous. Note that
by definition, there do not exist |-expressions that denote a formal
DNA molecule containing lower nick letters.

THEOREM 14. Let X be an expressible formal DNA molecule which
contains at least one lower nick letter a, and let Z\aZop .. .p 2y for
some m > 2 be the nick free decomposition of X. For h=1,...,m, let
E), be an operator-minimal 1-expression denoting Z), gnd let the string
Ej, be the sequence of the arguments of E;,. Then E = <T E, Em> is a
minimal DNA expression denoting X and

|E[=343 B (X) + 3 n(X) +[X] .
Each minimal DNA expression denoting X is constructed in this way.

We return to the formal DNA molecule X from Figure 7, for
which B|(X) = 3 and n;(X) = 10. We already established the nick free
decomposition ZipZrprZ3pZ4 of X and considered an operator-mini-
mal T-expression E, denoting Z,. It is not difficult to also construct
operator-minimal T-expressions for Z;, Z3 and Z:

Er = (T ou(] (] w2)as(] o)),
Ey = (T (] an2)ous(T ona)ous(] oe))s
Eqy= (1 (] 7))

The corresponding minimal DNA expression denoting the entire
formal DNA molecule X is

E= (T o (| (] o) o3 (] o))

(LT as) a6 (1 o)) as (L (T o0) a0 (] ot11))
(T onz) ous (T ona) ous (Tous) (L our)).

148 R. VAN VLIET ET AL.

Indeed,
|E| =42+ |X|, =3+3-B|(X) +3-n;(X) +|X] .

Also this construction requires linear time.

8. Conclusions and directions for future research

We have introduced DNA expressions as a formal notation for
DNA molecules that may contain nicks and gaps. However, there
are (formal) DNA molecules with nicks that cannot be represented
by our expressions. We have given lower bounds on the length of a
DNA expression denoting a given formal DNA molecule. These
lower bounds are expressed in terms of a few simple counting func-
tions. For each expressible formal DNA molecule, we have
described (constructions for) the minimal DNA expression(s) denot-
ing it. For nick free molecules with single-stranded components, we
have also demonstrated that the resulting DNA expressions are
indeed minimal.

Because each expressible formal DNA molecule can be denoted by
infinitely many DNA expressions, one may ask for a normal form: a
well-defined set of properties such that for each expressible formal
DNA molecule X, there is a unique DNA expression denoting X and
satisfying those properties. And given a normal form, one may ask
for an algorithm that, for each DNA expression, determines the
equivalent DNA expression in normal form. We will report on re-
search concerning normal forms in a forthcoming publication.

A possible motivation for considering formal notations for DNA
molecules is to provide (a first step towards) a formal calculus for the
processing of DNA molecules. Such a calculus would have to contain
operators that correspond to various biochemical operations on DNA
molecules, as well as expressions for sorts of DNA molecules resulting
from applications of these operators. Having such a calculus would
be a clear advantage for research in areas such as DNA computing
and (parts of) genetic engineering.

From the mathematical point of view, the set of operators acting
on expressions denoting DNA molecules does not have to correspond
exactly to the biochemical operations. However, one should be able
to express such operations by suitable compositions of mathematical
operations.

THE CONSTRUCTION OF MINIMAL DNA EXPRESSIONS 149

As we have remarked in Section 3, the set of operators that we
consider is one of many possible choices. Investigating other nota-
tions for DNA molecules based on different motivations (e.g., corre-
sponding to specific biochemical procedures such as PCR) could
certainly advance research on formal calculi for DNA processing.

References

Adleman LM (1994) Molecular computation of solutions to combinatorial problems.
Science 266: 1021-1024

Boneh D, Dunworth C and Lipton RJ (1996) Breaking DES using a molecular com-
puter. In: Lipton RJ and Baum EB (eds) DNA Based Computers, Proceedings of a
DIMACS workshop, April 4, 1995, pp. 37-66. Princeton University, American
Mathematical Society, Providence, RI

Chen J and Reif J (eds) (2004) DNA Computing, 9th International workshop on DNA
based computers, DNA9, Madison, WI, USA, June 1-3, 2003, Revised Papers,
LNCS 2943. Springer-Verlag, Berlin

Ferretti C, Mauri G and Zandron C (eds) (2005) DNA Computing, 10th International
workshop on DNA computing, DNA10, Milan, Italy, June 7-10, 2004, Revised
Selected Papers, LNCS 3384. Springer-Verlag, Berlin

Head T (1987) Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors. Bulletin of Mathematical Biology 49(6): 737-759

Li Z (1999) Algebraic properties of DNA operations. In: Kari L, Rubin H and Wood
DH (eds) Proceedings of the fourth international meeting on DNA based comput-
ers, University of Pennsylvania, Philadelphia, USA, June 15-19, 1998, BioSystems
52: 55-61

Paun Gh, Rozenberg G and Salomaa A (1998) DNA Computing — New Computing
Paradigms. Springer-Verlag, Berlin

Rivas E and Eddy SR (2000) The language of RNA: a formal grammar that includes
pseudoknots. Bioinformatics 16(4): 334-340

van Vliet R (2004) Combinatorial aspects of minimal DNA expressions (ext.). Technical
Report 2004-03, Leiden Institute of Advanced Computer Science, Leiden Univer-
sity, see www.liacs.nl/home/rvvliet/mindnaexpr.html

van Vliet R, Hoogeboom HJ and Rozenberg G (2005) Combinatorial aspects of min-
imal DNA expressions. In: Ferretti C, Mauri G, Zandron C (eds) DNA Computing,
10th International workshop on DNA computing, DNA10, Milan, Italy, June 7-10,
2004, Revised Selected Papers, LNCS 3384. Springer-Verlag, Berlin, pp. 375-388

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

