
Fundamenta Informaticae 123 (2013) 227–243 227

DOI 10.3233/FI-2012-808

IOS Press

A Minimal Normal Form for DNA Expressions

Rudy van Vliet∗, Hendrik Jan Hoogeboom
Leiden Institute of Advanced Computer Science, Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

rvvliet@liacs.nl

Abstract. DNA expressions constitute a formal notation for DNA molecules that may contain nicks
and gaps. Different DNA expressions may denote the same DNA molecule. We define a (minimal)
normal form for the language of DNA expressions, and describe an algorithm to rewrite a given
DNA expression into the normal form.

Keywords: DNA molecules, formal notation, DNA expressions, minimal normal form, algorithm,
complexity

1. Introduction

Most research in the field of DNA computing concerns questions like what kind of DNA molecules
(or other types of molecules) can be constructed, and what these molecules may be used for. In fact,
DNA turns out to have unexpected applications, see, e.g., [2] and [1]. Less attention is paid in literature
on formal ways to denote the molecules involved. Formal notations may, however, be useful, e.g., to
describe precisely what computations are carried out with the molecules and what the results of these
computations are.

In [5] and [6], we have introduced DNA expressions, as a formal notation for DNA molecules that
may contain nicks (missing phosphodiester bonds between adjacent nucleotides in the same strand) and
gaps (missing nucleotides in one of the strands). Different DNA expressions may denote the same
DNA molecule. Such molecules are called equivalent. In [6], it is explained how to construct minimal

∗Address for correspondence: Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, 2333 CA
Leiden, The Netherlands

228 R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions

DNA expressions, i.e., the shortest possible DNA expressions denoting a given DNA molecule. This
construction is based on certain characteristics of the molecule involved.

When one wants to decide whether or not two DNA expressions E1 and E2 are equivalent, one may
determine the DNA molecules that they denote and check if these are the same. In this paper, we present
a different approach. We define a normal form: a set of properties, such that for each DNA expression
there is exactly one equivalent DNA expression with these properties. As the DNA expressions that
satisfy the normal form are minimal, it is called a minimal normal form. We also describe an algorithm
to rewrite an arbitrary DNA expression into the normal form. Now to decide whether or not E1 and E2

are equivalent, one determines their normal form versions and then checks if these are the same. This
approach is elegant, because it operates at the level of DNA expressions only, rather than to refer to the
DNA molecules denoted.

This paper is the second part of a diptych. Part 1, [4], describes an efficient, recursive algorithm to
rewrite a given DNA expression into an equivalent, minimal DNA expression. For many DNA molecules,
however, there exist several (equivalent) minimal DNA expressions. Depending on the input, the algo-
rithm may yield each of these. Hence, by itself, this algorithm is not sufficient to produce a normal form.
However, as we see in the present paper, the algorithm can function as a first step towards a true normal
form.

The paper is organized as follows. Section 2 summarizes a few important definitions and results from
earlier publications, illustrated by an example. The minimal normal form is introduced in Section 3. In
Section 4, we describe a direct, recursive algorithm to rewrite a given DNA expression into the equivalent
DNA expression in minimal normal form. The set-up of this algorithm is the same as that of the algorithm
for minimality in [4]. Unfortunately, its time complexity turns out to be worse: at least quadratic in the
worst case, whereas the algorithm for minimality is linear. Therefore, in Section 5, we describe an
alternative, two-step algorithm. It first uses the algorithm from [4] to obtain a minimal DNA expression,
and then rewrites the result into the minimal normal form. This two-step algorithm requires only linear
time and space. Finally, in Section 6, we draw conclusions and suggest directions for future research.

We assume the reader to be familiar with the terminology and notation used in part 1 of the diptych,
[4]. We only repeat those definitions and results that we want to refer to frequently, or that are otherwise
important for understanding the present paper. More details about the minimal normal form and the
algorithm we describe in this paper can be found in the technical report [3].

2. Minimal DNA expressions

In [6], it is described how to construct minimal DNA expressions denoting a given formal DNA molecule.
For perfect double-stranded molecules, the construction is trivial:

Theorem 1. An ↕-expression E is minimal if and only if E = ⟨↕ α1⟩ for an N -word α1.
In that case, E is the unique minimal DNA expression denoting S(E) =

(α1

c(α1)

)
.

For nick free molecules with at least one single-stranded component, the construction is more involved.
We need the following terminology to describe the construction:

Definition 2. Let X be a nick free formal DNA molecule.

R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions 229

α1 α2 α3
α4

α5 α6 α7 α8 α9 α10
α11

α12

α1 α2 α3
α4

α5 α6 α7 α8 α9 α10
α11

α12

α1 α2 α3
α4

α5 α6 α7 α8 α9 α10
α11

α12

α1 α2 α3
α4

α5 α6 α7 α8 α9 α10
α11

α12

︸︷︷︸
Y0

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
Y1

︸ ︷︷ ︸
X2 Y2 = λ

(a)

︸︷︷︸
Y0

︸ ︷︷ ︸
X1

Y1 = λ

(b)

Y0 = λ X1︷ ︸︸ ︷ Y1︷︸︸︷ X2︷ ︸︸ ︷ Y2︷ ︸︸ ︷
(c)

Y0 = λ X1︷ ︸︸ ︷ Y1︷ ︸︸ ︷
(d)

Figure 1. Pictorial representation of the formal DNA molecule X from Example 3. (a) The primitive lower block
partitioning of X . (b) The second lower block partitioning of X . (c) The primitive upper block partitioning of X .
(d) The second upper block partitioning of X .

A primitive lower block X1 of X is a maximal substring of X consisting of only lower components
and double components, and containing at least one lower component.

The primitive lower block partitioning of X is the partitioning Y0X1Y1 . . . Xr0Yr0 of X , such that
X1, . . . , Xr0 are all primitive lower blocks of X .

A lower block X1 of X is a substring of X that starts and ends with a primitive lower block.
A lower block partitioning of X is a partitioning Y0X1Y1 . . . XrYr of X , such that each Xj is a

lower block of X , and each primitive lower block of X is contained in an Xj .

A primitive upper block, the primitive upper block partitioning, an upper block and an upper block
partitioning are defined completely analogously. We use B↓(X) and B↑(X) to denote the number of
primitive lower blocks and the number of primitive upper blocks of X , respectively.

Example 3. In Figure 1, we have depicted the two possible lower block partitionings and the two possi-
ble upper block partitionings of the nick free formal DNA molecule

X =
(α1

−
)(α2α3

c(α2α3)

)(−
α4

)(α5

c(α5)

)(α6

−
)(α7α8

c(α7α8)

)(α9

−
)(α10

c(α10)

)(−
α11

)(α12

c(α12)

)
. (1)

The submolecules X1 and X2 in Figure 1(a) are the two primitive lower blocks of X . The submolecules
X1 and X2 in Figure 1(c) are the two primitive upper blocks of X . Hence, B↓(X) = B↑(X) = 2. Note
that the two lower block partitionings end with an empty substring Y2 or Y1, respectively. The two upper
block partitionings start with an empty substring Y0.

We then have

Theorem 4. Let X be a nick free formal DNA molecule which contains at least one single-stranded
component, and let x′1 . . . x

′
k for some k ≥ 1 be the decomposition of X .

230 R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions

1. If B↑(X) ≥ B↓(X), then

• let P = Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary lower block partitioning of X;

• for j = 1, . . . , r, let Ej be an arbitrary minimal DNA expression denoting Xj ;

• for j = 0, 1, . . . , r, let Yj = x′aj . . . x
′
bj

for some aj ≥ 1 and bj ≤ k;

• for j = 0, 1, . . . , r and for i = aj , . . . , bj , let

εi =

{
αi if x′i =

(αi

−
)

for an N -word αi

⟨↕ αi⟩ if x′i =
(αi

c(αi)

)
for an N -word αi;

and (2)

• let
E = ⟨↑ εa0 . . . εb0E1εa1 . . . εb1 . . . Erεar . . . εbr⟩ . (3)

Then

(a) all ingredients needed to construct E (i.e., the lower block partitioning P , the minimal DNA
expressions Ej , the indices aj and bj , and the arguments εi) are well defined, and

(b) E is a minimal DNA expression denoting X , and

|E| = 3 + 3 ·B↓(X) + 3 · n↕(X) + |X|A. (4)

2. If B↓(X) ≥ B↑(X), then . . . (symmetric to Claim 1).

Note that if B↑(X) = B↓(X) ≥ 1, then both claims are applicable, and we obtain both minimal ↑-
expressions and minimal ↓-expressions denoting X . Different lower (or upper) block partitionings result
in different, but of course equivalent, minimal DNA expressions. All minimal DNA expressions denoting
a nick free formal DNA molecule with at least one single-stranded component satisfy the construction
from Theorem 4.

Example 5. Let X be the formal DNA molecule from Example 3. As B↑(X) = B↓(X) = 2, we can
use both claims in Theorem 4 to construct a minimal DNA expression denoting X . The minimal DNA
expressions corresponding to the four partitionings depicted in Figure 1 are

Ea = ⟨↑ α1 ⟨↓ ⟨↕ α2α3⟩α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩α9 ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩ , (5)

Eb = ⟨↑ α1 ⟨↓ ⟨↕ α2α3⟩α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩⟩ , (6)

Ec = ⟨↓ ⟨↑ α1 ⟨↕ α2α3⟩⟩α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩ , (7)

Ed = ⟨↓ ⟨↑ α1 ⟨↓ ⟨↕ α2α3⟩α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩ . (8)

In the above example, there was exactly one minimal DNA expression for each lower block parti-
tioning and each upper block partitioning. In general, however, there may be more than one minimal
DNA expression corresponding to the same partitioning.

For a formal DNA molecule X with nick letters, minimal DNA expressions are constructed in a
similar way. The construction is based on lower block partitionings (if X has lower nick letters) or upper

R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions 231

block partitionings (if X has upper nick letters) of the nick free pieces of X . Note that formal DNA
molecules with both upper nick letters and lower nick letters are not expressible.

In order to decide whether or not a given DNA expression is minimal, we can use the following char-
acterization from [5]. It describes syntactic requirements on the arguments of the occurring operators. It
is valid both for nick free DNA expressions and for DNA expressions with nicks:

Theorem 6. A DNA expression E is minimal, if and only if

(DMin.1) each occurrence of the operator ↕ in E has as its argument an N -word α (i.e., not a DNA
expression); and

(DMin.2) no occurrence of the operator ↑ in E has an ↑-argument, and no occurrence of the operator ↓
in E has a ↓-argument; and

(DMin.3) unless E = ⟨↑ α⟩ or E = ⟨↓ α⟩ for an N -word α, each occurrence of an operator ↑ or ↓ in E
has at least two arguments; and

(DMin.4) each inner occurrence of an operator ↑ or ↓ in E is alternating; and

(DMin.5) for each inner occurrence of an operator ↑ or ↓ in E,

• the first argument is either an N -word α or an ↕-expression ⟨↕ α⟩ for an N -word α, and

• the last argument is either an N -word α or an ↕-expression ⟨↕ α⟩ for an N -word α; and

(DMin.6) if the outermost operator of E is ↑ or ↓, then

• either its first argument is an N -word α or an ↕-expression ⟨↕ α⟩ for an N -word α,

• or its last argument is an N -word α or an ↕-expression ⟨↕ α⟩ for an N -word α,

• or it has two consecutive expression-arguments.

The adjective ‘alternating’ in Property (DMin.4) means that the arguments of the operator involved are N -
words and DNA expressions, alternately. In this definition, we consider consecutive N -word-arguments
as a single argument. If the outermost operator of an ↑-expression or ↓-expression E is alternating, then
E itself is also called alternating.

It is easily verified that indeed the four DNA expressions from (5)–(8) have all the properties from
Theorem 6. On the other hand, the DNA expression

E = ⟨↓⟨↑ α1 ⟨↕ ⟨↑ α2 ⟨↕ ⟨↕ α3⟩⟩⟩⟩⟩
⟨↑ ⟨↓ α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↓ ⟨↕ α7⟩ ⟨↕ α8⟩⟩⟩⟩α9 ⟨↑ ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩⟩ ⟩ ,

(9)

which denotes the same molecule but is much longer, has only Property (DMin.6).
For certain DNA expressions it is easy to decide whether or not they are nick free:

Lemma 7. Let E be an ↑-expression with Properties (DMin.2), (DMin.4) and (DMin.5). Then E is nick
free, if and only if E is alternating.

There is of course an analogous result for ↓-expressions. In particular, for a minimal ↑-expression (or
↓-expression), the adjectives ‘nick free’ and ‘alternating’ are equivalent.

232 R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions

3. A minimal normal form

Minimal DNA expressions can be considered as the ‘best’ DNA expressions to denote a given formal
DNA molecule. Therefore, it is desirable that the normal form DNA expressions are, in particular,
minimal. In this section, we present a normal form that achieves this goal. For that reason, it is called a
minimal normal form.

We define the minimal normal form in a constructive way. That is, for each expressible formal
DNA molecule, we describe how to construct the corresponding DNA expression in minimal normal
form. Later, we list five properties that characterize the normal form DNA expressions in terms of the
arguments of the operators occurring in them.

As we have seen, for many formal DNA molecules, there exists more than one minimal DNA expres-
sion. For example, there are four minimal DNA expressions denoting the molecule from (1), which are
given in (5)–(8). From among all different minimal DNA expressions denoting the same formal DNA
molecule, we have to choose one to be the normal form DNA expression. We do this by explicitly fixing
the choices that are made in the construction of a minimal DNA expression (see Theorem 4).

First, this construction is based on lower block partitionings and upper block partitionings of nick
free (sub)molecules. If these partitionings are not unique, then the resulting DNA expression depends
on the partitionings that we choose. Here, we make a very natural choice: we always use the primitive
lower block partitioning or upper block partitioning.

In addition, if a formal DNA molecule X is nick free, contains at least one single-stranded component
and B↑(X) = B↓(X), then by Theorem 4, there exist both minimal ↑-expressions and minimal ↓-
expressions for X . Here, our choice for an ↑-expression or a ↓-expression is determined by the first
single-stranded component of X . An upper component results in an ↑-expression; a lower component
results in a ↓-expression.

We thus have the following definition of the minimal normal form for the nick free case, where
EMinNF(X) denotes the normal form DNA expression denoting X:

Definition 8. Let X be a nick free formal DNA molecule.

1. If X =
(α1

c(α1)

)
for an N -word α1, then EMinNF(X) = ⟨↕ α1⟩.

2. If X contains at least one single-stranded component and B↑(X) = B↓(X), then

(a) if the first single-stranded component of X is an upper component, then EMinNF(X) is the
minimal ↑-expression denoting X based on the primitive lower block partitioning of X , as
described in Theorem 4(1);

(b) if the first single-stranded component of X is a lower component, then . . . (symmetric to
Case 2a).

3. If B↑(X) > B↓(X), then EMinNF(X) is the minimal ↑-expression denoting X based on the prim-
itive lower block partitioning of X , as described in Theorem 4(1).

4. If B↓(X) > B↑(X), then . . . (symmetric to Case 3).

For an expressible formal DNA molecule X with nick letters, EMinNF(X) is based on the primitive lower
block partitionings (if X has lower nick letters) or primitive upper block partitionings (if X has upper
nick letters) of the nick free pieces of X . We describe the details in [3].

R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions 233

Example 9. Let X be the nick free formal DNA molecule from (1). We have B↑(X) = B↓(X) = 2, and
the first single-stranded component of X is an upper component. According to Case 2a of Definition 8,
EMinNF(X) is the minimal ↑-expression based on the primitive lower block partitioning of X . This is the
lower block partitioning from Figure 1(a). Hence, EMinNF(X) is the ↑-expression Ea from (5).

Theorem 6 characterized the minimal DNA expressions in general, in terms of operators and argu-
ments. We have a similar result for the DNA expressions in minimal normal form. It applies both to nick
free molecules and to molecules with nicks.

Theorem 10. A DNA expression E is in minimal normal form, if and only if

(DMinNF.1) each occurrence of the operator ↕ in E has as its argument an N -word α (i.e., not a DNA
expression); and

(DMinNF.2) no occurrence of the operator ↑ in E has an ↑-argument, and no occurrence of the operator
↓ in E has a ↓-argument; and

(DMinNF.3) unless E = ⟨↑ α⟩ or E = ⟨↓ α⟩ for an N -word α, each occurrence of an operator ↑ or ↓ in
E has at least two arguments; and

(DMinNF.4) for each inner occurrence of an operator ↑ or ↓ in E, the arguments are N -words α and
↕-expressions ⟨↕ α⟩ for N -words α, alternately; and

(DMinNF.5) if the outermost operator of E is ↑ or ↓, then

• either its first argument is an N -word α or an ↕-expression ⟨↕ α⟩ for an N -word α,

• or it has two consecutive expression-arguments.

Note that Properties (DMinNF.1), (DMinNF.2) and (DMinNF.3) are equal to Properties (DMin.1), (DMin.2)
and (DMin.3) of (general) minimal DNA expressions.

Property (DMinNF.4) includes Properties (DMin.4) and (DMin.5). It is stronger, however, than these
two properties together. The property ensures that, unlike in (general) minimal DNA expressions, the
nesting level of the brackets is limited to 3. This is due to the choice for primitive lower block partition-
ings and primitive upper block partitionings in the definition of the minimal normal form.

Finally, Property (DMinNF.5) is a stronger version of Property (DMin.6). The difference between the
two properties is caused by the second choice we make in the definition of the minimal normal form: if
B↑(X) = B↓(X) ≥ 1 for a nick free formal DNA molecule X , then the first single-stranded component
of X determines whether EMinNF(X) is an ↑-expression or a ↓-expression.

The ↑-expression Ea from (5), which is in minimal normal form, may serve as an illustration. It is
easily verified that it has all five properties, and in particular Properties (DMinNF.4) and (DMinNF.5).

Proof of Theorem 10: We only give the proof for the nick free case, because we have not precisely de-
fined the minimal normal form for molecules with nicks. However, by Lemma 7, a minimal ↑-expression
or ↓-expression with nicks has two consecutive expression-arguments. Then it certainly has Property
(DMinNF.5).

“=⇒” Let E be a DNA expression in minimal normal form, and let X = S(E). If E is an ↕-
expression, then E = ⟨↕ α1⟩ for an N -word α1, and it obviously has all the properties from the claim.

234 R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions

Now assume, that E is a nick free ↑-expression. Because E is minimal, it has Properties (DMin.1)–
(DMin.6) from Theorem 6. Then it certainly has Properties (DMinNF.1)–(DMinNF.3). By Definition 8, E
is based on the primitive lower block partitioning Y0X1Y1 . . . XrYr of X , as described in Theorem 4(1).

Each primitive lower block Xj in the partitioning consists of only lower components (at least one)
and double components. Hence, B↓(Xj) = 1 and B↑(Xj) = 0. It is easily verified that, according to
the construction from Theorem 4, the only minimal DNA expression Ej denoting Xj is a ↓-expression,
with as arguments an alternating sequence of N -words α and ↕-expressions ⟨↕ α⟩. This implies that E
has Property (DMinNF.4).

By Lemma 7, E (which is nick free) does not have consecutive expression-arguments. Hence, to
establish Property (DMinNF.5), we must examine its first argument. Both if B↑(X) = B↓(X) and if
B↑(X) > B↓(X), the first single-stranded component of X is an upper component. This implies that
the substring Y0 in the primitive lower block partitioning is non-empty, and thus yields at least one
argument for E. Then it follows from (2) and (3) that the first argument of E is either an N -word α or
an ↕-expression ⟨↕ α⟩. Indeed, E also has Property (DMinNF.5).

“⇐=” If a DNA expression E has Properties (DMinNF.1)–(DMinNF.5), then it certainly has Proper-
ties (DMin.1)–(DMin.6), and thus is minimal. Let X = S(E). If E is an ↕-expression, then by Prop-
erty (DMinNF.1), it must be ⟨↕ α1⟩ for an N -word α1, which is in minimal normal form.

We now assume that E is a nick free ↑-expression. Because E is minimal, it satisfies the construction
from Theorem 4 and we must have B↑(X) ≥ B↓(X). By Lemma 7, E is alternating. We can use
Property (DMinNF.4) to prove that each ↓-argument Ej of E denotes a primitive lower block of X . This
implies that E is based on the primitive lower block partitioning of X . Moreover, by Property (DMinNF.5),
the first argument of E is either an N -word α or an ↕-expression ⟨↕ α⟩. In the latter case, because E is
alternating, the second argument is an N -word. This implies that the first single-stranded component of
X is an upper component. Indeed, both if B↑(X) = B↓(X) and if B↑(X) > B↓(X), E is in minimal
normal form.

Note that both the language of all DNA expressions and the language of all minimal DNA expressions
are context-free but not regular. Due to the limited nesting level of the brackets, the language of all DNA
expressions in minimal normal form turns out to be regular. In [3], this is proven by (1) defining a
context-free grammar generating the language, and (2) proving that this grammar is not self-embedding.

4. Recursive algorithm for the minimal normal form

In Section 4 of [4], we have described a recursive function MakeMinimal for rewriting an arbitrary DNA
expression E into an equivalent, minimal DNA expression. For an expression-argument Ei of E, the
function first performs a recursive call. If necessary, the result is subject to some local rearrangements,
to make E minimal itself. We have established that this approach requires both linear time and space.
Therefore, when we wish to rewrite an arbitrary DNA expression E into an equivalent DNA expression
in minimal normal form, our first attempt may be a recursive function MakeMinimalNF: we first rewrite
the arguments of E into the minimal normal form, and then deal with the DNA expression as a whole.
The global set-up of this function is given in Figure 2.

Note that lines 6 and 12 should not be implemented by a call MakeMinimalNF(E), because that
would trigger an infinite sequence of recursive calls, with the same argument E. Instead, we should try

R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions 235

1. MakeMinimalNF (E)
// recursively rewrites an arbitrary DNA expression E
// into an equivalent DNA expression in minimal normal form

2. {
3. if (E is an ↕-expression)
4. then if (the argument of E is a DNA expression E1)
5. then MakeMinimalNF (E1);
6. substitute E by a DNA expression E′ in minimal normal form

satisfying E′ ≡ E;
7. fi

8. else // E is an ↑-expression or a ↓-expression
9. for all expression-arguments Ei of E
10. do MakeMinimalNF (Ei);
11. od
12. substitute E by a DNA expression E′ in minimal normal form

satisfying E′ ≡ E;
13. fi
14. }

Figure 2. Pseudo-code of the recursive function MakeMinimalNF.

to devise procedures consisting of local rearrangements at the string level, which make sure that a DNA
expression with normal form arguments becomes in normal form itself.

Note also that the structure of MakeMinimalNF is equal to that of MakeMinimal in [4]. The main
difference between the description of MakeMinimal and that of MakeMinimalNF is that the former has
more detail. Both lines 6–10 and lines 16–35 of MakeMinimal are an implementation of the general
statement ‘substitute E by a minimal DNA expression E′ satisfying E′ ≡ E’ (cf. lines 6 and 12 of
MakeMinimalNF).

Regardless of the actual implementations of lines 6 and 12 of MakeMinimalNF, we can already
draw an important conclusion: the recursive approach of the function is not as efficient as that of
MakeMinimal. We demonstrate this by examining its complexity for DNA expressions of a specific
type.

Example 11. Let α be an arbitrary N -word, and let

E1 = ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩ ,
E2p = ⟨↑ ⟨↕ α⟩α E2p−1 α ⟨↕ α⟩⟩ (p ≥ 1),

E2p+1 = ⟨↓ ⟨↕ α⟩α E2p α ⟨↕ α⟩⟩ (p ≥ 1).

Hence,

E1 = ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩ ,
E2 = ⟨↑ ⟨↕ α⟩α ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩α ⟨↕ α⟩⟩ ,
E3 = ⟨↓ ⟨↕ α⟩α ⟨↑ ⟨↕ α⟩α ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩α ⟨↕ α⟩⟩α ⟨↕ α⟩⟩ ,
E4 = ⟨↑ ⟨↕ α⟩α ⟨↓ ⟨↕ α⟩α ⟨↑ ⟨↕ α⟩α ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩α ⟨↕ α⟩⟩α ⟨↕ α⟩⟩α ⟨↕ α⟩⟩ ,

etc.

It is easy to prove by induction on p, that for any p ≥ 1,

236 R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions

• both E2p and E2p+1 are DNA expressions,

• S(E2p) =
(α
c(α)

)(α
−
) (α

c(α)

)(−
α

)(α
c(α)

)(α
−
)
. . .

(α
c(α)

)(−
α

)(α
c(α)

)(α
−
)︸ ︷︷ ︸

p− 1 times

·

(α
c(α)

)(−
α

)(α
c(α)

)
·(α

−
)(α

c(α)

)(−
α

)(α
c(α)

)
. . .

(α
−
)(α

c(α)

)(−
α

)(α
c(α)

)︸ ︷︷ ︸
p− 1 times

(α
−
)(α

c(α)

)
=

(α
c(α)

)(α
−
) (α

c(α)

)(−
α

)(α
c(α)

)(α
−
)
. . .

(α
c(α)

)(−
α

)(α
c(α)

)(α
−
)︸ ︷︷ ︸

2p− 1 times

(α
c(α)

)
,

S(E2p+1) =
(α
c(α)

)(−
α

)(α
c(α)

)(α
−
)
. . .

(α
c(α)

)(−
α

)(α
c(α)

)(α
−
)︸ ︷︷ ︸

p times

·

(α
c(α)

)(−
α

)(α
c(α)

)
·(α

−
)(α

c(α)

)(−
α

)(α
c(α)

)
. . .

(α
−
)(α

c(α)

)(−
α

)(α
c(α)

)︸ ︷︷ ︸
p times

=
(α
c(α)

)(−
α

) (α
c(α)

)(α
−
)(α

c(α)

)(−
α

)
. . .

(α
c(α)

)(α
−
)(α

c(α)

)(−
α

)︸ ︷︷ ︸
2p times

(α
c(α)

)
,

• B↑(S(E2p)) = B↓(S(E2p)) + 1 = 2p,

B↓(S(E2p+1)) = B↑(S(E2p+1)) + 1 = 2p+ 1,

• n↕(S(Eq)) = 2q, both if q = 2p and if q = 2p+ 1,

• |Eq| = 3 · 3q + (4q − 1) · |α|, both if q = 2p and if q = 2p+ 1.

In particular, E2p and E2p+1 are nick free, and their lengths are linear in p. Moreover, both E2p and
E2p+1 are minimal, because they achieve the minimal lengths mentioned in Theorem 4. However, for
q ≥ 3, Eq is not in minimal normal form, because it violates Property (DMinNF.4).

By Definition 8(3) and (4) and the construction from Theorem 4, the corresponding DNA expressions
in minimal normal form are

E′
2p = EMinNF(S(E2p))

=

⟨
↑ ⟨↕ α⟩α ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩α . . . ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩α︸ ︷︷ ︸

2p− 1 times

⟨↕ α⟩

⟩
, (10)

E′
2p+1 = EMinNF(S(E2p+1))

=

⟨
↓ ⟨↕ α⟩α ⟨↑ ⟨↕ α⟩α ⟨↕ α⟩⟩α . . . ⟨↑ ⟨↕ α⟩α ⟨↕ α⟩⟩α︸ ︷︷ ︸

2p times

⟨↕ α⟩

⟩
.

R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions 237

Now, let p ≥ 1 and let us apply the function MakeMinimalNF to the ↓-expression E2p+1, with the
↑-expression E2p as one of its arguments. When we call the function recursively for E2p, this argument
is rewritten into the ↑-expression E′

2p. The other two expression-arguments ⟨↕ α⟩ of E2p+1 are already
in minimal normal form. In order to rewrite the result⟨

↓ ⟨↕ α⟩αE′
2pα ⟨↕ α⟩

⟩
into the corresponding DNA expression in minimal normal form E′

2p+1, we must remove the 2p − 1
occurrences of ↓ in E′

2p, add 2p− 1 occurrences of ↑ at other positions in the DNA expression, and also
rearrange the brackets. This requires time that is linear in p.

Likewise, at a higher level of the recursion, we have had to rearrange 2p − 2, 2p − 3, 2p − 4, . . . , 1
occurrences of operators in E′

2p−1, E
′
2p−2, E

′
2p−3, . . . , E

′
2, respectively. Altogether, this takes time that

is quadratic in p, and thus in the length of E2p+1.
The analysis for the ↑-expression E2p is completely analogous.

5. Two-step algorithm for the minimal normal form

Instead of the direct, recursive approach by the function MakeMinimalNF, we propose a two-step ap-
proach to construct the normal form version of a given DNA expression E∗

1 . We first use the function
MakeMinimal from [4] to produce an equivalent, minimal DNA expression E∗

2 . We subsequently rewrite
E∗

2 into the equivalent DNA expression in minimal normal form E∗
3 .

In Figure 3, we give pseudo-code for the algorithm NormalizeMinimal, which performs this second
step. It can be used both for nick free DNA expressions and for DNA expressions with nicks.

The two substitutions in the algorithm are justified by violations of a property from Theorem 10. At
each of them, we have indicated the property involved. Note that Properties (DMinNF.1)–(DMinNF.3) are
not mentioned. This is natural, as they equal Properties (DMin.1)–(DMin.3) of minimal DNA expressions,
and the input of NormalizeMinimal is supposed to be minimal. The first substitution, in line 8, involves
the procedure RotateToMinimal that was also used by the function MakeMinimal. In Figure 4, we
have copied the pseudo-code of this procedure from [4]. To illustrate the algorithm, we continue with an
example from [4].

Example 12. We again consider the formal DNA molecule X depicted in Figure 1. In (9), we have given
a DNA expression denoting X , which is not minimal. In Example 12 in [4], we have used MakeMinimal

to rewrite this DNA expression into an equivalent, minimal DNA expression. The result was

E = ⟨↓ ⟨↑ α1 ⟨↕ α2α3⟩⟩α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩

which equals Ec from (7). We apply NormalizeMinimal to E.
The ↓-expression E is alternating. Because its first argument is the ↑-expression E1 = ⟨↑ α1 ⟨↕ α2α3⟩⟩,

E violates Property (DMinNF.5). According to (the analogue for ↓-expressions of) line 8 of algorithm
NormalizeMinimal and line RtM.6 of procedure RotateToMinimal, E is substituted by

E = ⟨↑ α1 ⟨↓ ⟨↕ α2α3⟩α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩⟩ .

This is the minimal DNA expression Eb from (6). The second argument of E is the ↓-expression

ε̂ = ⟨↓ ⟨↕ α2α3⟩α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩ ,

238 R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions

1. NormalizeMinimal (E∗
2)

// locally rewrites an arbitrary minimal DNA expression E∗
2

// into a DNA expression E∗
3 in minimal normal form satisfying E∗

3 ≡ E∗
2

2. {
3. E = E∗

2;
4. if (E is an ↕-expression)
5. then E∗

3 = E;
6. else // E is an ↑-expression or a ↓-expression;

// without loss of generality, assume it is an ↑-expression
7. if (E is alternating and its first argument is a ↓-argument)
8. then substitute E by the result of procedure RotateToMinimal;

(DMinNF.5)
9. fi

// E is an ↑-expression or a ↓-expression;
// without loss of generality, assume it is an ↑-expression

10. ε̂ = first argument of E;
11. stop = false;
12. while (not stop)
13. do if (ε̂ is a ↓-expression with at least one ↑-argument)

// let ε̂ = ⟨↓ ε1 . . . εi−1 ⟨↑ εi,1 . . . εi,m⟩ εi+1 . . . εn⟩,
// where ⟨↑ εi,1 . . . εi,m⟩ is the first ↑-argument of ε̂

14. then substitute ε̂ in E
by ⟨↓ ε1 . . . εi−1εi,1⟩ εi,2 . . . εi,m−1 ⟨↓ εi,mεi+1 . . . εn⟩; (DMinNF.4)

15. ε̂ = εi,2;
16. else if (ε̂ is not the last argument of E)
17. then ε̂ = next argument of E;
18. else stop = true;
19. fi
20. fi
21. od
22. E∗

3 = E;
23. fi
24. }

Figure 3. Pseudo-code of the algorithm NormalizeMinimal.

whose third argument is the ↑-expression E3 = ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩. Because the occur-
rence of the operator ↓ in ε̂ is an inner occurrence in E, it violates Property (DMinNF.4). According to
line 14 of algorithm NormalizeMinimal, ε̂ is substituted in E by the sequence of arguments

⟨↓ ⟨↕ α2α3⟩α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩α9 ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩ ,

yielding
E = ⟨↑ α1 ⟨↓ ⟨↕ α2α3⟩α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩α9 ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩ . (11)

After the substitution, we proceed with ε̂ = α6. In this case, the only other ↓-argument that we consider
in the while-loop, is ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩, which does satisfy Property (DMinNF.4). Indeed, the DNA
expression in (11) has all five properties from Theorem 10, and thus is in minimal normal form. It equals
the minimal DNA expression Ea from (5).

R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions 239

RtM.1. RotateToMinimal (E)
// locally rewrites an alternating ↓-expression E = ⟨↓ ε1 . . . εn⟩
// with Properties (DMin.1)-(DMin.5), for which either the first
// argument ε1 or the last argument εn (or both) is an ↑-argument,
// into a minimal ↑-expression E′ satisfying E′ ≡ E

RtM.2. {
RtM.3. if (ε1 is an ↑-expression ⟨↑ ε1,1 . . . ε1,m1−1ε1,m1⟩)
RtM.4. then if (εn is an ↑-expression ⟨↑ εn,1εn,2 . . . εn,mn⟩)
RtM.5. then E′ = ⟨↑ ε1,1 . . . ε1,m1−1 ⟨↓ ε1,m1ε2 . . . εn−1εn,1⟩ εn,2 . . . εn,mn⟩;
RtM.6. else E′ = ⟨↑ ε1,1 . . . ε1,m1−1 ⟨↓ ε1,m1ε2 . . . εn−1εn⟩⟩;
RtM.7. fi
RtM.8. else // εn must be an ↑-expression ⟨↑ εn,1εn,2 . . . εn,mn⟩
RtM.9. E′ = ⟨↑ ⟨↓ ε1ε2 . . . εn−1εn,1⟩ εn,2 . . . εn,mn⟩;
RtM.10. fi
RtM.11. }

Figure 4. Pseudo-code of the procedure RotateToMinimal.

In general, in the while-loop in algorithm NormalizeMinimal, we may encounter several ↓-arguments
ε̂ that do not satisfy Property (DMinNF.4) and must be substituted. In particular, such ↓-arguments may
be among the arguments εi,2, . . . , εi,m−1, which, in an earlier iteration, have become arguments of the
outermost operator ↑. Successive substitutions bring down the nesting level of the brackets to at most 3.
As an illustration, we revisit the DNA expressions from Example 11, for which the recursive function
MakeMinimalNF appeared to use quadratic time.

Example 13. Let α be an arbitrary N -word, and let

E1 = ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩ ,
E2p = ⟨↑ ⟨↕ α⟩αE2p−1α ⟨↕ α⟩⟩ (p ≥ 1),

E2p+1 = ⟨↓ ⟨↕ α⟩αE2pα ⟨↕ α⟩⟩ (p ≥ 1).

As we observed in Example 11, for p ≥ 1, both E2p and E2p+1 are minimal. The starting DNA expres-
sion E1 is also minimal. We can thus apply algorithm NormalizeMinimal to these DNA expressions.
For q ≥ 1, Eq is alternating but its first argument is ⟨↕ α⟩. Hence, lines 7–9 of the algorithm are not
applicable. We examine the effect of the while-loop on an ↑-expression E2p for p ≥ 2:

E = E2p = ⟨↑ ⟨↕ α⟩αE2p−1α ⟨↕ α⟩⟩
=

⟨
↑ ⟨↕ α⟩α

⟨
↓ ⟨↕ α⟩α

⟨
↑ ⟨↕ α⟩αE2(p−1)−1α ⟨↕ α⟩

⟩
α ⟨↕ α⟩

⟩
α ⟨↕ α⟩

⟩
.

The third argument of E2p is the ↓-expression E2p−1, which has in turn as an argument the ↑-expression
E2(p−1). According to line 14, E2p−1 is substituted in E by

⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩αE2(p−1)−1α ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩ ,

yielding

E =
⟨
↑ ⟨↕ α⟩α ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩αE2(p−1)−1α ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩α ⟨↕ α⟩

⟩
.

240 R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions

Now, the fifth argument of E is the ↓-expression E2(p−1)−1. If p ≥ 3, then this ↓-expression has as an
argument the ↑-expression E2(p−2). According to line 14, E2(p−1)−1 is substituted in E by

⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩αE2(p−2)−1α ⟨↓ ⟨↕ α⟩α ⟨↕ α⟩⟩ .

In p− 1 substitutions, we obtain the DNA expression E′
2p from (10), which is in minimal normal form.

For each substitution, we perform a constant amount of work: remove one occurrence of ↑, add one
occurrence of ↓ and rearrange two brackets. Hence, the total amount of work (and time) to get from E2p

to E′
2p is linear in p, and thus linear in |E2p|.
The effect of the while-loop on the ↓-expressions E2p+1 is analogous.

It is instructive to examine two differences between the operation of MakeMinimalNF and that of
NormalizeMinimal, for the DNA expressions from Examples 11 and 13. First, due to its recursive
set-up, MakeMinimalNF rewrites the DNA expressions from the inside outwards: first E3, then E4, then
E5, etc. NormalizeMinimal, on the other hand, rewrites the DNA expression from the outside inwards.

The second difference concerns the nesting level of the brackets of the DNA expression. In every
step of MakeMinimalNF, we rewrite a DNA subexpression with nesting level 4 (which is not in normal
form) into a DNA subexpression with nesting level 3 (which is in normal form). Hence, the nesting
level of the overall DNA expression decreases by 1. On the other hand, every time we execute line 14
of NormalizeMinimal, the nesting level of the DNA expression decreases by 2. 1 It is not the factor 2
itself which makes NormalizeMinimal more efficient. However, because we make two steps at a time,
we no longer introduce operators and brackets in one step, which we have to remove in the next step, as
we do with MakeMinimalNF.

For the DNA expressions in Examples 12 and 13, algorithm NormalizeMinimal correctly produces
the equivalent DNA expressions in minimal normal form. This is the case for arbitrary minimal DNA
expressions:

Theorem 14. For each minimal DNA expression E∗
2 , the algorithm NormalizeMinimal produces an

equivalent DNA expression E∗
3 in minimal normal form.

Proof: In lines 4 and 5 of NormalizeMinimal, we have a (minimal) ↕-expression E∗
2 . By Theorem 1,

E∗
2 must be of the form ⟨↕ α1⟩ for an N -word α1. In this case, by Definition 8(1), E∗

2 is in minimal
normal form already, and there is no need to rewrite it.

In line 6, we have a (minimal) ↑-expression E = E∗
2 . By Properties (DMin.1) and (DMin.2) from

Theorem 6, each argument of E is either an N -word α, or an ↕-expression ⟨↕ α⟩, or a ↓-argument.
If E does not have Property (DMinNF.5), then E must be alternating and its first argument must be a

↓-argument ε1 = ⟨↓ ε1,1 . . . ε1,m⟩. In lines 7–9, we deal with this case. By Property (DMin.5), the first
argument ε1,1 of ε1 is either an N -word α or an ↕-expression ⟨↕ α⟩.

When we apply (the analogue for ↑-expressions of) procedure RotateToMinimal to E, line RtM.6 is
applicable, and the result is an equivalent, minimal ↓-expression. The first argument of this ↓-expression
is ε1,1, i.e., an N -word α or an ↕-expression ⟨↕ α⟩. Hence, E has acquired Property (DMinNF.5).

Let us assume that after lines 7–9, E is an ↑-expression. We argue that the following property is an
invariant for the while-loop:
1There is one exception. If the original DNA expression was a ↓-expression E2p+1 for some p ≥ 1, then the final rewriting
step yields a decrease of the nesting level by only 1.

R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions 241

E is a minimal ↑-expression with Property (DMinNF.5), satisfying E ≡ E∗
2 , ε̂ is an argument

of E, and the arguments to the left of ε̂ do not contain any occurrence of ↑.

The property is obviously true before the while-loop, when ε̂ is the first argument of E. Assume the
invariant holds before a certain iteration of the loop.

We first consider the case that ε̂ is a ↓-expression with at least one ↑-argument. Then let ε̂ =
⟨↓ ε1 . . . εn⟩ for some n ≥ 1 and arguments ε1, . . . , εn, and let εi = ⟨↑ εi,1 . . . εi,m⟩ for some m ≥ 1 and
arguments εi,1, . . . , εi,m be the first ↑-argument of ε̂. By Property (DMin.4), both ε̂ and εi are alternating
and nick free. By Property (DMin.3), m ≥ 2 and the substution in line 14 is well defined. We substitute
ε̂ by the sequence of arguments ⟨↓ ε1 . . . εi−1εi,1⟩ εi,2 . . . εi,m−1 ⟨↓ εi,mεi+1 . . . εn⟩.

We can use the definition of (the semantics of) a DNA expression to prove that the overall string E is
still a DNA expression, and in particular an ↑-expression, after the substitution. Moreover, S(E) has not
changed. Even the nick letters in S(E) (if any) are the same before and after the substitution, because
both the original argument ε̂ and the new sequence of arguments are nick free.2 The length of E has not
changed, either, so E is still minimal.

We can also prove that E has consecutive expression-arguments before the substitution, if and only if
it has such arguments afterwards. This implies that E still has Property (DMinNF.5), after the substitution.

The choice of εi as the first ↑-argument of ε̂ ensures that the new ↓-argument ⟨↓ ε1 . . . εi−1εi,1⟩ of E
does not contain any occurrence of ↑. Hence, if we set ε̂ to εi,2 after the substitution, as we do in line 15,
the arguments to the left of ε̂ still do not contain ↑.

We conclude that the invariant remains valid in the case that ε̂ is a ↓-expression with at least one
↑-argument. If ε̂ is not such an argument, then Properties (DMin.1) and (DMin.2) imply that ε̂ does not
contain any occurrence of ↑. When we execute line 17, the invariant remains valid.

In every iteration of the while-loop (except the last one, when we set the variable stop to true), ε̂
moves to the right. This guarantees that the loop terminates.

After the loop, the only remaining occurrence of ↑ in E is the outermost operator. E also has
Property (DMinNF.4) now, and thus is in minimal normal form. The semantics were not changed during
the algorithm.

To carry out NormalizeMinimal efficiently, we use a data structure with the first, the second and
the fourth feature we described in Section 5 of [4]: (1) we store (the letters of) a DNA expression E in a
doubly-linked list, (2) we connect each opening bracket to the corresponding closing bracket and for each
N -word-argument of an operator, we connect the first letter to the last letter, and (4) for each occurrence
of ↑ or ↓ in E, we maintain a circular, doubly-linked list of its consecutive expression-arguments. This
data structure can be initialized in linear time, and for each substitution performed by the algorithm, it
can be updated in constant time. We then have:

Theorem 15. For each minimal DNA expression E∗
2 , both the time and the space required by the algo-

rithm NormalizeMinimal are linear in |E∗
2 |.

As we have seen in Example 13, there exist minimal DNA expressions for which NormalizeMinimal

performs a linear number of rewriting steps. Then obviously, the time complexity cannot be better than
linear.
2The substitution in line 14 of NormalizeMinimal is almost the reverse of line RtM.5 of RotateToMinimal. This explains
why we use the same type of arguments to prove that the operations do not affect the semantics, see the proof of Lemma 15 in
[4].

242 R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions

Proof: Let E∗
2 be an arbitrary minimal DNA expression. It is not hard to see that the data structure we

propose requires space that is linear in |E∗
2 |. Intuitively, the linear time complexity is not surprising,

either, because in the while-loop in the algorithm, we simply traverse the DNA expression from left to
right.

More formally, we first note that the instructions outside the while-loop require constant time. In
particular, for line 7, we need to know whether or not E is alternating. This is the case, if and only if the
list of consecutive expression-arguments of the outermost operator of E is empty. As the fourth feature
of our data structure provides this list, we can check this in constant time.

To analyse the time requirements of the while-loop, we observe, just like we did in the proof of
Theorem 14, that in every iteration except the last one, ε̂ moves to the right. The list of arguments to
the left of ε̂ grows with one argument. Let us use ε̂j to denote the argument that is added in iteration j.
We examine the time spent in this iteration. This time depends on (the type of) the argument ε̂ that we
consider in the iteration.

We first assume that ε̂ is a ↓-expression. In line 13, we check if ε̂ has at least one ↑-argument, and
if so, then we need its first ↑-argument for the substitution in line 14. A natural implementation of this
consists of checking the arguments of ε̂ from left to right, until we find an ↑-argument or reach the end
of ε̂. Thanks to the first two features of the data structure, this costs only constant time per argument.
When we check i arguments of ε̂ for this, we spend time that is linear in i.

If we find an ↑-argument εi in ε̂, then we perform lines 14 and 15. We can do this in constant time,
which does not affect the complexity. In this case, ε̂j = ⟨↓ ε1 . . . εi−1εi,1⟩. If, on the other hand, we
do not find an ↑-argument, then i = n and ε̂j = ε̂ = ⟨↓ ε1 . . . εi⟩. In both cases, |ε̂j | ≥ i + 3. Then
obviously, the time spent in the iteration (which is linear in i) is at most linear in |ε̂j |.

If ε̂ is not a ↓-expression, then ε̂j = ε̂. In this case, the iteration costs only constant time, which is
obviously at most linear in |ε̂j |.

We conclude that the time required by the while-loop as a whole is at most linear in the length of
the list of arguments of the resulting DNA expression E∗

3 , and thus in |E∗
3 | = |E∗

2 | itself. Then the same
goes for the time required by the entire algorithm NormalizeMinimal.

Recall that NormalizeMinimal is the second step of our algorithm to rewrite an arbitrary DNA
expression E∗

1 into the minimal normal form, where the first step consists of applying the recursive
function MakeMinimal to E∗

1 . As the DNA expression E∗
2 resulting from this first step is an equivalent,

minimal DNA expression, it certainly satisfies |E∗
2 | ≤ |E∗

1 |. Then we can combine Theorem 20 from [4]
and Theorem 15, to determine the complexity of the total two-step algorithm:

Theorem 16. For each DNA expression E∗
1 , both the time and the space required by the two-step algo-

rithm to rewrite E∗
1 into the minimal normal form are linear in |E∗

1 |.

This implies that the two-step algorithm is better than the naive, single-pass recursive function Make-

MinimalNF. That function, if worked out in detail, would also yield the normal form version of its input.
However, as we have seen in Example 11, it requires at least quadratic time in the worst case.

6. Conclusions and directions for future research

We have introduced a (minimal) normal form for DNA expressions. This normal form is characterized
by five syntactic properties, which are easy to check. We have described a two-step algorithm, which

R. van Vliet and H.J. Hoogeboom / A Minimal Normal Form for DNA Expressions 243

computes the normal form version of a given DNA expression. This is useful, e.g., to decide if two DNA
expressions are equivalent. The algorithm first determines a minimal DNA expression that is equivalent
to its input, and then rewrites this minimal DNA expression into the normal form. The algorithm is
elegant, because it does not refer to the semantics of the DNA expression involved. It consists of string
manipulations on the DNA expression itself. The algorithm requires linear time and space.

An important research line for the future could be to define and analyse new types of DNA ex-
pressions. These should be based on operators that directly model operations that are performed on
real-world DNA. With new operators, one might also be able to represent DNA molecules with other
‘imperfections’ than nicks and gaps, e.g., DNA molecules with hairpin loops. It would certainly be a
challenge to define DNA expressions that not only denote DNA molecules, but also implicitly describe
how to synthesize them from the basic elements A, C, G and T.

Acknowledgement

The authors thank Grzegorz Rozenberg for useful comments on the manuscript.

References
[1] H. Gu, J. Chao, S.-J. Xiao, N.C. Seeman: A proximity-based programmable DNA nanoscale assembly line,

Nature 465, 2010, 202–205.

[2] P.W.K. Rothemund: Folding DNA to create nanoscale shapes and patterns, Nature 440, 2006, 297–302.

[3] R. van Vliet: All about a Minimal Normal Form for DNA Expressions, Technical Report 2011-03, Leiden
Institute of Advanced Computer Science, Leiden University, July 2011, see
www.liacs.nl/home/rvvliet/dnaexpressions/

[4] R. van Vliet, H.J. Hoogeboom: Making DNA expressions minimal, Fundamenta Informaticae, 123, 2013,
199-226.

[5] R. van Vliet, H.J. Hoogeboom, G. Rozenberg: Combinatorial aspects of minimal DNA expressions, DNA
Computing – 10th International Workshop on DNA Computing, DNA10, Milan, Italy, June 7–10, 2004 – Revised
Selected Papers (C. Ferretti, G. Mauri, C. Zandron, Eds.), LNCS 3384, Springer, Berlin, 2005, 375–388.

[6] R. van Vliet, H.J. Hoogeboom, G. Rozenberg: The construction of minimal DNA expressions, Natural Com-
puting 5, 2006, 127–149.

