
Fundamenta Informaticae 123 (2013) 199–226 199

DOI 10.3233/FI-2012-807

IOS Press

Making DNA Expressions Minimal

Rudy van Vliet∗, Hendrik Jan Hoogeboom
Leiden Institute of Advanced Computer Science, Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

rvvliet@liacs.nl

Abstract. DNA expressions constitute a formal notation for DNA molecules that may contain nicks
and gaps. Different DNA expressions may denote the same DNA molecule. We describe an algo-
rithm to rewrite a given DNA expression into a DNA expression of minimal length denoting the
same molecule.

Keywords: DNA molecules, formal notation, minimal DNA expressions, algorithm, complexity

1. Introduction

In the past twenty-five years, DNA computing has become a flourishing research area. Since [8] and [1],
researchers from various disciplines, ranging from theoretical computer science to molecular biology,
investigate the computational power of DNA molecules, both from a theoretical and an experimental
point of view. Nowadays, research groups from all over the world contribute to the field, see, e.g., [13]
and [3]. Current topics of interest include, a.o., gene assembly in ciliates, DNA sequence design, self-
assembly and nanotechnology, see, e.g., [6], [9], [19], [12], [7] and [4]. The basic concepts of DNA
computing are described in [11].

Despite the growing interest in DNA computing, not much attention is paid in literature to formal
ways to denote the DNA molecules – exceptions are [2] and [10]. Formal notations can, however, be
useful, e.g., to precisely denote molecules and to compactly describe the computations carried out using
them.

In [17] and [18], we have introduced DNA expressions as a formal notation for DNA molecules that
may contain nicks (missing phosphodiester bonds between adjacent nucleotides in the same strand) and

∗Address for correspondence: Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, 2333 CA
Leiden, The Netherlands

200 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

gaps (missing nucleotides in one of the strands). Different DNA expressions may denote the same DNA
molecule. Such DNA expressions are called equivalent. In [18], it is explained how to construct minimal
DNA expressions: the shortest possible DNA expressions denoting a given molecule. Different types
of molecules are dealt with by different constructions. Minimal DNA expressions can be characterized
by six syntactic properties, which are described in [17]. This characterization makes it easy to decide
whether or not a given DNA expression is minimal.

For a given DNA expression E, one may want to find an equivalent, minimal DNA expression, e.g., in
order to save space for storing the description of a DNA molecule. A natural way to achieve this, consists
of two steps: (1) to determine the molecule denoted by E, and (2) to use the constructions from [18] to
obtain a minimal DNA expression for that molecule. In this paper, we present a different approach. We
describe an algorithm, which directly rewrites E into an equivalent, minimal DNA expression. In fact, the
algorithm modifies the DNA expression in such a way that it achieves the six properties mentioned above
(and thus becomes minimal), but still denotes the same molecule. This approach is elegant, because it
operates at the level of DNA expressions only, rather than to refer to the DNA molecules they denote.

The paper is organized as follows. In Sections 2 and 3, we recall some definitions and results we have
published before. In particular, in Section 2, we discuss formal DNA molecules and DNA expressions in
general, and in Section 3, we consider minimal DNA expressions. In Section 4, we present the algorithm
to rewrite an arbitrary DNA expression into an equivalent, minimal DNA expression. The correctness
of the algorithm and its complexity are considered in Section 5. Finally, in Section 6, we draw the
conclusions from this paper.

This paper is the first part of a diptych. In part 2, [16], we describe a normal form for the DNA
expressions. As we see then, the algorithm described in the present paper may also serve as the first
step of an algorithm to efficiently rewrite arbitrary DNA expressions into this normal form. More details
about the results in both papers can be found in the technical report [15].

2. Formal DNA molecules and DNA expressions

We use the alphabet N = {A, C, G, T} to denote the four possible nucleotides in a DNA molecule. The
nucleotides A and T are each other’s Watson-Crick complements: if A is at a certain position in one
strand of a double-stranded DNA molecule, then the nucleotide at the corresponding position in the other
strand must be T, and vice versa. Likewise, C and G are each other’s complements.

The elements of N are called N -letters. A non-empty string α over N is an N -word. The func-
tion c over N ∗ produces the element-wise (non-reversed) Watson-Crick complement of its argument.
Technically speaking, c is a letter-to-letter morphism. For example, c(ACATG) = TGTAC.

Formal DNA molecules constitute the semantical basis of our language. They are strings over the al-
phabet A▽△ = A±∪A+∪A−∪{▽

,△}, where A± = {
(A

T

)
,
(C

G

)
,
(G

C

)
,
(T

A

)
}, A+ = {

(A
−
)
,
(C
−
)
,
(G
−
)
,
(T
−
)
},

and A− = {
(−

A

)
,
(−

C

)
,
(−

G

)
,
(−

T

)
}. The elements of A = A± ∪ A+ ∪ A− are called A-letters. The el-

ements of A+ and A− correspond to gaps in the lower strand and upper strand of the DNA molecule,
respectively. The symbols ▽ and △ are called nick letters; ▽ is the upper nick letter and △ is the lower
nick letter. They represent nicks (missing bonds) in the upper strand and lower strand, respectively.

Not all strings over A▽△ are formal DNA molecules. The strings must satisfy certain local constraints
that, a.o., prevent the molecule from ‘falling apart’.

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 201

Definition 1. A formal DNA molecule is a string X = x1x2 . . . xr with r ≥ 1 and for i = 1, . . . , r,
xi ∈ A▽△, satisfying

1. if xi ∈ A+, then xi+1 /∈ A− (i = 1, 2, . . . , r − 1),
if xi ∈ A−, then xi+1 /∈ A+ (i = 1, 2, . . . , r − 1),

2. x1, xr ∈ A,

3. if xi ∈ {▽
,△}, then xi−1, xi+1 ∈ A± (i = 2, 3, . . . , r − 1).

Examples of formal DNA molecules are

X1 =
(A

T

)(C
G

)(A
T

)(T
A

)(G
C

)
, (1)

X2 =
(A

T

)▽(C
G

)(A
T

)
△

(T
A

)(G
−
)
, (2)

X3 =
(−

T

)(C
G

)(A
−
)(T

−
)(G

C

)
, (3)

X4 =
(A

T

)(C
G

)
△

(A
T

)(T
−
)(G

C

)
. (4)

Because X1 and X3 do not contain nick letters, they are called nick free.
We define three functions on formal DNA molecules X: L(X) and R(X) are the leftmost letter

and the rightmost letter of X , respectively, and |X|A counts the A-letters occurring in X . For example,
L(X2) =

(A
T

)
, R(X2) =

(G
−
)

and |X2|A = 5.
Usually, we abbreviate the notation of a formal DNA molecule X . If X has a substring

(ai

c(ai)

)
. . .

. . .
(aj

c(aj)

)
, then we write

(ai . . . aj

c(ai . . . aj)

)
instead. Likewise, we may write

(ai . . . aj

−
)

and
(−
ai . . . aj

)
. A

double component of a formal DNA molecule X is a maximal (non-empty) substring of X of the form(ai . . . aj

c(ai . . . aj)

)
. An upper component (of the form

(ai . . . aj

−
)

) and a lower component (of the form
(−
ai . . . aj

)
)

are defined analogously. Upper components and lower components are also called single-stranded com-
ponents. The nick letters occurring in a formal DNA molecule are components by themselves.

The decomposition of a formal DNA molecule X is a sequence x′1, . . . , x
′
k for some k ≥ 1, such that

X = x′1 . . . x
′
k and each x′i is a component of X . For the ease of notation, we usually write x′1 . . . x

′
k

instead of x′1, . . . , x
′
k to denote the decomposition. The decompositions of the four example formal DNA

molecules are

X1 =
(ACATG

TGTAC

)
with k = 1,

X2 =
(A

T

)▽(CA
GT

)
△

(T
A

)(G
−
)

with k = 6,

X3 =
(−

T

)(C
G

)(AT
−
)(G

C

)
with k = 4,

X4 =
(AC

TG

)
△

(A
T

)(T
−
)(G

C

)
with k = 5.

DNA expressions represent formal DNA molecules. We recall the formalism introduced in [17].
DNA expressions are the result of applying the operators ↑, ↓ and ↕ to N -words. The scope of each
operator occurring in a DNA expression is delimited by brackets ⟨ and ⟩. Hence, DNA expressions are
strings over the alphabet ΣD = {A,C,G,T, ↑, ↓, ↕, ⟨ , ⟩}. However, not all strings over ΣD are DNA
expressions; DNA expressions have a certain syntax.

202 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

For example, an ↑-expression is of the form ⟨↑ ε1 . . . εn⟩ for some n ≥ 1, where ε1, . . . , εn are the
arguments of ↑. The arguments may be either N -words or other DNA expressions. Analogously, we
have ↓-expressions ⟨↓ ε1 . . . εn⟩. The operator ↕ has only one argument ε1, which may again be either an
N -word or a DNA expression, yielding ⟨↕ ε1⟩.

The effect of the operator ↑ is three-fold: (1) it interprets an argument that is an N -word α as the
upper strand

(α
−
)

, (2) it removes the nicks occurring in the upper strands of its arguments, and (3) it
connects the upper strands of consecutive arguments. For the last effect to be possible, the arguments
must fit together by upper strands, i.e., if εi and εi+1 are consecutive arguments, and Xi and Xi+1 are the
formal DNA molecules represented by these arguments, then both R(Xi) and L(Xi+1) must be elements
of A± ∪ A+. Otherwise, there would be a gap in the upper strand ‘between’ the two arguments. This is
a semantical restriction in the syntactical description. Where ↑ connects the upper strands of consecutive
arguments, it does not connect the lower strands. Hence, if both R(Xi) and L(Xi+1) are elements of
A±, then a nick is introduced into the lower strand.

The effect of the operator ↓ is analogous to that of ↑. We should simply read ‘lower’ for ‘upper’ and
vice versa. The operator ↕ does something completely different: it fills the gaps occurring in both strands
of its (single) argument ε1. It provides the missing nucleotides and connects them to their neighbours.
The operator ↕ neither introduces nor removes nicks in its argument. If ε1 is an N -word α1, then ↕
interprets it as the upper strand

(α1

−
)

, before it performs its action.
The concatenation of two or more DNA expressions is not a DNA expression. DNA expressions can

be concatenated only as arguments of ↑-expressions or ↓-expressions.
The semantics of a DNA expression E is the formal DNA molecule represented by E and is de-

noted by S(E). The simplest DNA expressions are ⟨↑ α1⟩, ⟨↓ α1⟩ and ⟨↕ α1⟩ for an N -word α1, with
S(⟨↑ α1⟩) =

(α1

−
)

, S(⟨↓ α1⟩) =
(−
α1

)
and S(⟨↕ α1⟩) =

(α1

c(α1)

)
. Less trivial examples are

E1 = ⟨↕ ⟨↑ ⟨↕ α1⟩α2⟩⟩ , with S(E1) =
(α1α2

c(α1α2)

)
, (5)

E2 = ⟨↑ ⟨↓ α1 ⟨↕ α2⟩⟩α3 ⟨↕ α4⟩⟩ , with S(E2) =
(−
α1

)(α2

c(α2)

)(α3

−
)(α4

c(α4)

)
, (6)

E3 = ⟨↓ ⟨↕ α1⟩ ⟨↕ α2⟩⟩ , with S(E3) =
(α1

c(α1)

)▽(α2

c(α2)

)
, (7)

E4 = ⟨↑ ⟨↓ ⟨↕ α1⟩ ⟨↕ α2⟩⟩ ⟨↕ α3⟩α4 ⟨↕ α5⟩⟩ ,
with S(E4) =

(α1α2

c(α1α2)

)
△

(α3

c(α3)

)(α4

−
)(α5

c(α5)

)
. (8)

On the other hand, the string ⟨↑ ⟨↓ ⟨↕ α1⟩α2⟩α3 ⟨↕ α4⟩⟩, which is not too different from E2, is not a
DNA expression, because the first argument ⟨↓ ⟨↕ α1⟩α2⟩ (which denotes

(α1

c(α1)

)(−
α2

)
) and the second

argument α3 (which corresponds to
(α3

−
)

) of the operator ↑ do not fit together by upper strands.
Let εi be an argument of a DNA expression E. If εi is an N -word, then it is called an N -word-

argument. Otherwise, it is an expression-argument. If εi is an ↑-expression (or ↓-expression or ↕-
expression), then it is also called an ↑-argument (↓-argument or ↕-argument, respectively). At some
point in this paper, it will be useful to have a single term for arguments that are not ↕-expressions, i.e.,
for N -word-arguments, ↑-arguments and ↓-arguments. We call such arguments non-↕-arguments.

A substring Es of a DNA expression E that is itself a DNA expression, is called a DNA subexpression
of E. If Es ̸= E, then it is a proper DNA subexpression. If Es is an ↑-expression, then it is an ↑-
subexpression of E. A ↓-subexpression and an ↕-subexpression are defined analogously.

For every N -word α occurring in a DNA expression E and for every proper DNA subexpression Es

of E we define its parent operator to be the operator which has the N -word or DNA subexpression as

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 203

an immediate argument. For example, in the DNA expression in (8), the parent operator of the N -word
α4 is the operator ↑.

The outermost operator of a DNA expression E is (the occurrence of) the operator that governs the
entire DNA expression. For example, if E is an ↑-expression ⟨↑ ε1 . . . εn⟩, then the outermost operator
of E is (the first occurrence of) ↑. All other occurrences of operators in E are called inner occurrences.

An occurrence of the operator ↑ or ↓ is called alternating, if its arguments are N -words and DNA
expressions, alternately. In this definition, we consider consecutive N -word-arguments as a single ar-
gument. Hence, the operator is alternating, if and only if it does not have two (or more) consecutive
expression-arguments. If the outermost operator of an ↑-expression or a ↓-expression E is alternating,
then E itself is also called alternating.

A formal DNA molecule is called expressible, if there exists a DNA expression denoting it. As
mentioned in, e.g., [17], not all formal DNA molecules are expressible:

Theorem 2. A formal DNA molecule X is expressible, if and only if X does not contain both upper
nick letters and lower nick letters.

Hence, X is expressible, if and only if X is nick free, or X only contains nicks in the upper strand, or
X only contains nicks in the lower strand. The formal DNA molecules X1, X3 and X4 from (1), (3) and
(4) are expressible. For example, proper choices for the αi’s in (5), (6) and (8) yield DNA expressions
denoting these molecules. On the other hand, the molecule X2 from (2) is not expressible.

3. Minimal DNA expressions

For each expressible formal DNA molecule, there exist infinitely many DNA expressions denoting it. For
example, if E is an ↑-expression ⟨↑ ε1 . . . εn⟩ denoting a formal DNA molecule X , then so is ⟨↑ E⟩ =
⟨↑ ⟨↑ ε1 . . . εn⟩⟩. DNA expressions E and E′ with the same semantics are called equivalent, and we write
E ≡ E′. The length of a DNA expression E, denoted by |E|, is the number of letters from ΣD occurring
in E. Clearly, the DNA expression E is three letters shorter than the equivalent DNA expression ⟨↑ E⟩.
A DNA expression E is minimal, if for each equivalent DNA expression E′, we have |E′| ≥ |E|.

In [18], we have described how to construct minimal DNA expressions for all types of expressible
formal DNA molecules. Here, we only give a complete description for nick free molecules. First, we
consider perfect double-stranded molecules:

Theorem 3. An ↕-expression E is minimal if and only if E = ⟨↕ α1⟩ for an N -word α1.
In that case, E is the unique minimal DNA expression denoting S(E) =

(α1

c(α1)

)
.

We need some additional terminology to describe the minimal DNA expressions denoting nick free
formal DNA molecules with at least one single-stranded component.

Definition 4. Let X be a nick free formal DNA molecule.
A primitive lower block X1 of X is a maximal substring of X consisting of only lower components

and double components, and containing at least one lower component.
The primitive lower block partitioning of X is the sequence of strings Y0, X1, Y1, . . . , Xr0 , Yr0 with

r0 ≥ 0, such that X = Y0X1Y1 . . . Xr0Yr0 and X1, . . . , Xr0 are all primitive lower blocks of X .

204 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

α1 α2 α3
α4

α5 α6 α7 α8 α9 α10
α11

α12

α1 α2 α3
α4

α5 α6 α7 α8 α9 α10
α11

α12

α1 α2 α3
α4

α5 α6 α7 α8 α9 α10
α11

α12

α1 α2 α3
α4

α5 α6 α7 α8 α9 α10
α11

α12

︸︷︷︸
Y0

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
Y1

︸ ︷︷ ︸
X2 Y2 = λ

(a)

︸︷︷︸
Y0

︸ ︷︷ ︸
X1

Y1 = λ

(b)

Y0 = λ X1︷ ︸︸ ︷ Y1︷︸︸︷ X2︷ ︸︸ ︷ Y2︷ ︸︸ ︷
(c)

Y0 = λ X1︷ ︸︸ ︷ Y1︷ ︸︸ ︷
(d)

Figure 1. Pictorial representation of the formal DNA molecule X from (9). (a) The primitive lower block parti-
tioning of X . (b) The second lower block partitioning of X . (c) The primitive upper block partitioning of X . (d)
The second upper block partitioning of X .

The definitions of a primitive upper block and the primitive upper block partitioning of X are com-
pletely analogous: we only have to substitute all occurrences of “lower” by “upper”. Usually, we write
Y0X1Y1 . . . Xr0Yr0 instead of Y0, X1, Y1, . . . , Xr0 , Yr0 to denote a primitive lower (or upper) block par-
titioning.

In Figure 1(a) and (c), we have depicted the primitive lower block partitioning and the primitive
upper block partitioning of the formal DNA molecule 1

X =
(α1

−
)(α2α3

c(α2α3)

)(−
α4

)(α5

c(α5)

)(α6

−
)(α7α8

c(α7α8)

)(α9

−
)(α10

c(α10)

)(−
α11

)(α12

c(α12)

)
. (9)

Note that the string Y2 occurring in the primitive lower block partitioning and the string Y0 occurring in
the primitive upper block partitioning equal the empty string λ.

We define three counting functions on nick free formal DNA molecules:

Definition 5. Let X be a nick free formal DNA molecule.

• B↓(X) is the number of primitive lower blocks of X;

• B↑(X) is the number of primitive upper blocks of X;

• n↕(X) is the number of double components of X .

For the formal DNA molecule X from (9), we have B↓(X) = B↑(X) = 2 and n↕(X) = 5.
Note that a perfect double-stranded molecule X =

(α1

c(α1)

)
does not have any primitive lower block

or primitive upper block. Hence, both the primitive lower block partitioning and the primitive upper
block partitioning of X reduce to Y0, with Y0 = X . This is the only nick free formal DNA molecule X
for which B↓(X) = B↑(X) = 0.

1We could have used a single symbol α to denote the concatenation of the two N -words α2 and α3 determining the first double
component of X . However, in Example 12, it will appear to be useful to have α2 and α3 separated. The same goes for α7 and
α8.

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 205

Definition 6. Let X be a nick free formal DNA molecule and let Y0X1Y1 . . . Xr0Yr0 with r0 = B↓(X) ≥
0 be the primitive lower block partitioning of X .

A lower block X1 of X is a substring of X that starts and ends with a primitive lower block. Hence,
X1 = Xj1Yj1 . . . Xj2 for some j1 and j2 with 1 ≤ j1 ≤ j2 ≤ r0.

A lower block partitioning of X is a sequence of strings Y0, X1, Y1, . . . , Xr, Yr for some r ≥ 0, such
that X = Y0X1Y1 . . . XrYr, and each Xj is a lower block of X , and each primitive lower block of X is
contained in an Xj .

Hence, a lower block partitioning of X is a partitioning of X based on (disjoint) lower blocks, which
together contain all primitive lower blocks. As each lower component is part of a primitive lower block,
the substrings Yj occurring in a lower block partitioning consist of only upper components and double
components.

An upper block and an upper block partitioning of X are defined completely analogously. For no-
tational convenience, we usually write Y0X1Y1 . . . XrYr instead of Y0, X1, Y1, . . . , Xr, Yr to denote a
lower (or upper) block partitioning.

If each lower block in a lower block partitioning contains exactly one primitive lower block, then
we have the primitive lower block partitioning. The formal DNA molecule from (9) has one more lower
block partitioning, which we have depicted in Figure 1(b). It also has another upper block partitioning,
which we have depicted in Figure 1(d).

We now have the tools to construct minimal DNA expressions for nick free formal DNA molecules
with at least one single-stranded component.

Theorem 7. Let X be a nick free formal DNA molecule which contains at least one single-stranded
component, and let x′1 . . . x

′
k for some k ≥ 1 be the decomposition of X .

1. If B↑(X) ≥ B↓(X), then

• let P = Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary lower block partitioning of X;

• for j = 1, . . . , r, let Ej be an arbitrary minimal DNA expression denoting Xj ;

• for j = 0, 1, . . . , r, let Yj = x′aj . . . x
′
bj

for some aj ≥ 1 and bj ≤ k; 2

• for j = 0, 1, . . . , r and for i = aj , . . . , bj , let

εi =

{
αi if x′i =

(αi

−
)

for an N -word αi

⟨↕ αi⟩ if x′i =
(αi

c(αi)

)
for an N -word αi;

and (10)

• let
E = ⟨↑ εa0 . . . εb0E1εa1 . . . εb1 . . . Erεar . . . εbr⟩ . (11)

Then

(a) all ingredients needed to construct E (i.e., the lower block partitioning P , the minimal DNA
expressions Ej , the indices aj and bj , and the arguments εi) are well defined, and

2In principle, the indices aj and bj satisfy 1 ≤ aj ≤ bj ≤ k. However, if Yj = λ (which is possible for j = 0 and j = r), then
by definition aj = bj + 1.

206 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

(b) E is a minimal DNA expression denoting X , and

|E| = 3 + 3 ·B↓(X) + 3 · n↕(X) + |X|A. (12)

2. If B↓(X) ≥ B↑(X), then . . . (symmetric to Claim 1).

All minimal DNA expressions denoting a nick free formal DNA molecule with at least one single-
stranded component satisfy the above construction. (The molecules without single-stranded components
were covered by Theorem 3.)

Note that if B↑(X) = B↓(X) ≥ 1, then there exist both minimal ↑-expressions and minimal ↓-
expressions denoting X , obviously with the same length. Moreover, if B↑(X) ≥ B↓(X) ≥ 2, then the
lower block partitioning of X is not unique: different lower block partitionings yield different minimal
↑-expressions. Of course, we have an analogous property if B↓(X) ≥ B↑(X) ≥ 2.

This holds in particular for the formal DNA molecule X from Figure 1, for which B↓(X) =
B↑(X) = 2. As we see in the example below, there are two minimal ↑-expressions denoting X , corre-
sponding to the two lower block partitionings of X , and there are two minimal ↓-expressions denoting
X , corresponding to the two upper block partitionings of X .

Example 8. Let X be the nick free formal DNA molecule from (9) and consider the lower block parti-
tioning Y0X1Y1 from Figure 1(b). Here Y0 =

(α1

−
)

,

X1 =
(α2α3

c(α2α3)

)(−
α4

)(α5

c(α5)

)(α6

−
)(α7α8

c(α7α8)

)(α9

−
)(α10

c(α10)

)(−
α11

)(α12

c(α12)

)
and Y1 = λ. By Theorem 7(1), the resulting minimal ↑-expression is Eb = ⟨↑ α1E1⟩, where E1 is a
minimal DNA expression denoting X1.

As B↓(X1) = 2 > B↑(X1) = 1, E1 must be a ↓-expression, which is recursively constructed using
Theorem 7(2). The result is

E1 = ⟨↓ ⟨↕ α2α3⟩α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩ .

This way, we can construct the four minimal DNA expressions denoting X:

Ea = ⟨↑ α1 ⟨↓ ⟨↕ α2α3⟩α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩α9 ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩ , (13)

Eb = ⟨↑ α1 ⟨↓ ⟨↕ α2α3⟩α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩⟩ , (14)

Ec = ⟨↓ ⟨↑ α1 ⟨↕ α2α3⟩⟩α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩ , (15)

Ed = ⟨↓ ⟨↑ α1 ⟨↓ ⟨↕ α2α3⟩α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩ . (16)

In the above example, each lower block partitioning and each upper block partitioning of X corre-
sponds to a single minimal DNA expression. In general, however, there may be more than one minimal
DNA expression Ei denoting a lower block Xi occurring in a lower block partitioning. Then the con-
struction from Theorem 7(1) yields more than one minimal ↑-expression corresponding to the same lower
block partitioning. This is the case if B↓(Xi) ≥ 3. Of course, an analogous property holds for minimal
↓-expressions corresponding to an upper block partitioning. In [17], we address the number of minimal
DNA expressions denoting a given formal DNA molecule.

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 207

For expressible formal DNA molecules with nick letters, the construction of minimal DNA expres-
sions is somewhat similar to that for nick free molecules. If the molecule has lower nick letters, then each
minimal DNA expression is an ↑-expression. It is obtained from lower block partitionings of the nick
free pieces of the molecule. We illustrate this by a special example, which is useful later in the paper. In
this example, the molecule does not have single-stranded components. A general description and a more
general example of the construction can be found in [18].

Example 9. Let
X =

(α1

c(α1)

)
△

(α2

c(α2)

)
△ . . .△

(αm

c(αm)

)
for some m ≥ 2 and N -words α1, . . . , αm. The nick free pieces of X are the double components(α1

c(α1)

)
, . . . ,

(αm

c(αm)

)
. For h = 1, . . . ,m,

(αh

c(αh)

)
does not contain any primitive lower block. Hence,

its only lower block partitioning is P = Y0, where Y0 =
(αh

c(αh)

)
. We apply the construction from

Theorem 7 to this simple partitioning, obtaining the ↑-expression ⟨↑ ⟨↕ αh⟩⟩. We now combine the m
↑-expressions for the m nick free pieces into a single ↑-expression, leaving out redundant occurrences
of ↑:

E = ⟨↑ ⟨↕ α1⟩ ⟨↕ α2⟩ . . . ⟨↕ αm⟩⟩ .

This appears to be the unique minimal DNA expression denoting X .

When we want to know whether or not a given DNA expression E is minimal, we can compute
its semantics X = S(E) and check if |E| equals the minimal length of DNA expressions denoting X
(which is, e.g., given in (12) for nick free molecules X with at least one single-stranded component and
B↑(X) ≥ B↓(X)). There is, however, a more elegant method, which does not refer to the semantics at
all. It is based on a characterization of minimal DNA expressions by six properties of (the arguments of)
the operators occurring in them. We only have to check these properties to decide if E is minimal.

Theorem 10. A DNA expression E is minimal, if and only if

(DMin.1) each occurrence of the operator ↕ in E has as its argument an N -word α (i.e., not a DNA
expression); and

(DMin.2) no occurrence of the operator ↑ in E has an ↑-argument, and no occurrence of the operator ↓
in E has a ↓-argument; and

(DMin.3) unless E = ⟨↑ α⟩ or E = ⟨↓ α⟩ for an N -word α, each occurrence of an operator ↑ or ↓ in E
has at least two arguments; and

(DMin.4) each inner occurrence of an operator ↑ or ↓ in E is alternating; and

(DMin.5) for each inner occurrence of an operator ↑ or ↓ in E,

• the first argument is either an N -word α or an ↕-expression ⟨↕ α⟩ for an N -word α, and

• the last argument is either an N -word α or an ↕-expression ⟨↕ α⟩ for an N -word α; and

(DMin.6) if the outermost operator of E is ↑ or ↓, then

• either its first argument is an N -word α or an ↕-expression ⟨↕ α⟩ for an N -word α,

208 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

Table 1. Examples of DNA expressions with all six properties from Theorem 10 except one. The first column
mentions the property that is not valid, the second column contains a corresponding DNA expression E, the
third column gives the formal DNA molecule X denoted by E, and the fourth column contains a minimal DNA
expression E∗ denoting X .

Property E X = S(E) E∗

(DMin.1) ⟨↕ ⟨↕ α1⟩⟩
(α1

c(α1)

)
⟨↕ α1⟩

(DMin.1) ⟨↑ α1 ⟨↕ ⟨↑ α2 ⟨↕ α3⟩⟩⟩⟩
(α1

−
)(α2α3

c(α2α3)

)
⟨↑ α1 ⟨↕ α2α3⟩⟩

(DMin.2) ⟨↑ ⟨↑ ⟨↕ α1⟩α2 ⟨↕ α3⟩⟩α4⟩
(α1

c(α1)

)(α2

−
)(α3

c(α3)

)(α4

−
)

⟨↑ ⟨↕ α1⟩α2 ⟨↕ α3⟩α4⟩

(DMin.3) ⟨↓ α1 ⟨↑ ⟨↕ α2⟩⟩⟩
(−
α1

)(α2

c(α2)

)
⟨↓ α1 ⟨↕ α2⟩⟩

(DMin.4) ⟨↑ α1 ⟨↓ ⟨↕ α2⟩ ⟨↕ α3⟩⟩⟩
(α1

−
)(α2α3

c(α2α3)

)
⟨↑ α1 ⟨↕ α2α3⟩⟩

(DMin.5) ⟨↑ α1 ⟨↓ ⟨↑ α2 ⟨↕ α3⟩⟩α4⟩⟩
(α1α2

−
)(α3

c(α3)

)(−
α4

)
⟨↑ α1α2 ⟨↓ ⟨↕ α3⟩α4⟩⟩

(DMin.5) ⟨↑ ⟨↓ α1 ⟨↑ ⟨↕ α2⟩α3 ⟨↕ α4⟩⟩⟩α5⟩
(−
α1

)(α2

c(α2)

)(α3

−
)(α4

c(α4)

)(α5

−
)

⟨↑ ⟨↓ α1 ⟨↕ α2⟩⟩α3 ⟨↕ α4⟩α5⟩

(DMin.6) ⟨↑ ⟨↓ α1 ⟨↕ α2⟩⟩α3 ⟨↓ ⟨↕ α4⟩α5⟩⟩
(−
α1

)(α2

c(α2)

)(α3

−
)(α4

c(α4)

)(−
α5

)
⟨↓ α1 ⟨↑ ⟨↕ α2⟩α3 ⟨↕ α4⟩⟩α5⟩

• or its last argument is an N -word α or an ↕-expression ⟨↕ α⟩ for an N -word α,
• or it has two consecutive expression-arguments.

This characterization also applies to minimal DNA expressions with nicks. The formal proof of the result
can be found in [14]. Here, we give a few examples and provide some intuition for each of the properties.

In Table 1, for each property, we give one or two DNA expressions that lack only that property, and
thus are not minimal. These examples demonstrate that none of the properties follows from the remaining
five properties, and could therefore be omitted.

Now, let E be an arbitrary minimal DNA expression. First, we observe that each DNA subexpression
Es of E must also be minimal. Otherwise, we could substitute Es in E by a shorter, equivalent DNA
subexpression. The resulting overall DNA expression would be equivalent to E, but shorter.

In particular, each ↕-subexpression Es of E must be minimal. By Theorem 3, Es must be of the
form ⟨↕ α⟩ for an N -word α. This explains Property (DMin.1).

Next, suppose that E has an ↑-subexpression Es = ⟨↑ ε1 . . . εn⟩ where the ith argument εi is an
↑-argument ⟨↑ εi,1 . . . εi,m⟩. Because the effect of the outermost operator ↑ of εi on εi,1, . . . , εi,m can as
well be achieved by the outermost operator ↑ of Es, we may substitute εi by its arguments. The result,

⟨↑ ε1 . . . εi−1εi,1 . . . εi,mεi+1 . . . εn⟩ ,

is equivalent to Es, but three letters shorter. Hence, Es is not minimal, and neither is E. This explains
Property (DMin.2).

Intuitively, Property (DMin.3) means that the effect of an operator ↑ or ↓ with a single argument is
often too small to justify the presence of the operator. In particular such an operator cannot express its
ability to connect consecutive arguments. Property (DMin.4) ensures that the arguments of a minimal
DNA expression are nick free. It is not efficient to first introduce nick letters and to later remove them.
All nick letters in the formal DNA molecule denoted can be produced by the outermost operator.

Let Es be a proper ↑-subexpression of E and let Xs = S(Es). By Property (DMin.5) (and Prop-
erty (DMin.4)), both the first and the last single-stranded component of Xs are upper components. In

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 209

fact, the submolecule is an upper block and B↑(X
s) = B↓(X

s) + 1. This justifies the use of the op-
erator ↑ here. If either the first or the last single-stranded component were a lower component, then it
would be more efficient to have this lower component produced by the parent operator of Es, which is
an occurrence of ↓.

The outermost operator has a weaker property. Assume that the outermost operator is ↑. By Prop-
erty (DMin.6), it is possible that this operator has only one of the two subproperties from Property (DMin.5)
(which is, e.g., the case if the formal DNA molecule X denoted is nick free and B↑(X) = B↓(X) ≥ 1),
or that the operator has two consecutive expression-arguments (as we will see in Lemma 11, this is the
case if and only if X contains lower nick letters).

4. An algorithm for minimality

For a given DNA expression E, we may use Theorem 10 to decide whether or not E is minimal. If it is
not, then we may wish to obtain an equivalent, minimal DNA expression E′.

An indirect way to achieve this, is by determining the semantics S(E) of E and then using Theorem 3
or Theorem 7 to construct a minimal DNA expression denoting S(E).

Here, we work out a different approach. We use a recursive function MakeMinimal which directly
rewrites E into an equivalent, minimal DNA expression, i.e., which does not refer to the semantics
S(E). In MakeMinimal, we first substitute the expression-arguments of E by equivalent, minimal DNA
expressions. Subsequently, step by step, we rewrite the overall DNA expression in such a way, that it
becomes minimal itself.

One of the steps involves a weaker version of the notion of equivalence. As we observed earlier, it
is not efficient to first introduce nick letters and to later remove them. Therefore, it may be useful to
substitute a proper DNA subexpression of E which does introduce nick letters by a nick free version.
To formalize this, we say that a DNA expression E1 is equivalent to a DNA expression E2 post-modulo
nicks, denoted E1 ≡▽ E2, if S(E1) and S(E2) are the same, except that S(E2) may contain additional
nick letters. Note that E1 is not necessarily nick free.

For example, if
E1 = ⟨↑ ⟨↕ α1α2⟩α3 ⟨↕ α4α5⟩⟩ ,
E2 = ⟨↑ ⟨↕ α1α2⟩α3 ⟨↕ α4⟩ ⟨↕ α5⟩⟩ , and

E3 = ⟨↑ ⟨↕ α1⟩ ⟨↕ α2⟩α3 ⟨↕ α4⟩ ⟨↕ α5⟩⟩ ,

then E1 ≡▽ E2, E2 ≡▽ E3 and E1 ≡▽ E3, because

S(E1) =
(α1α2

c(α1α2)

)(α3

−
)(α4α5

c(α4α5)

)
,

S(E2) =
(α1α2

c(α1α2)

)(α3

−
)(α4

c(α4)

)
△

(α5

c(α5)

)
, and

S(E3) =
(α1

c(α1)

)
△

(α2

c(α2)

)(α3

−
)(α4

c(α4)

)
△

(α5

c(α5)

)
.

Note that if E1 ≡ E2, then certainly E1 ≡▽ E2.
In Figure 2, we give the pseudo-code of the function MakeMinimal. It can be applied both to nick

free DNA expressions and to DNA expressions with nicks. The description of the function contains four
instructions in a style like

substitute E by a minimal DNA expression E′ satisfying E′ ≡ E; (proc. . . .)

210 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

1. MakeMinimal (E)
// recursively rewrites an arbitrary DNA expression E
// into an equivalent, minimal DNA expression

2. {
3. if (E is an ↕-expression)
4. then if (the argument of E is a DNA expression E1)
5. then MakeMinimal (E1);
6. if (E1 is an ↕-expression)
7. then substitute E by E1; (DMin.1)
8. else // E1 is an ↑-expression or a ↓-expression
9. substitute E by a minimal DNA expression E′

satisfying E′ ≡ E; (proc. Make↕ExprMinimal) (DMin.1)
10. fi
11. fi

12. else // E is an ↑-expression or a ↓-expression;
// without loss of generality, assume it is
// an ↑-expression ⟨↑ ε1 . . . εn⟩ for some n ≥ 1
// and N-words and DNA expressions ε1, . . . , εn

13. for (i = 1 to n)
14. do if (εi is a DNA expression Ei)
15. then MakeMinimal (Ei);
16. if (Ei is a ↓-expression which is not alternating)
17. then substitute Ei in E by a minimal, nick free

DNA expression E′
i satisfying E′

i ≡▽ Ei;
(proc. Denickify) (DMin.4)

18. fi
19. if (Ei is a ↓-expression for which the first argument

or the last argument is an ↑-argument)
20. then substitute Ei in E by a minimal ↑-expression E′

i
satisfying E′

i ≡ Ei; (proc. RotateToMinimal) (DMin.5)
21. fi
22. if (Ei is an ↑-expression)
23. then substitute Ei in E by its arguments; (DMin.2)
24. fi
25. fi
26. od

27. if (E has only one argument ε1)
28. then if (ε1 is a DNA expression E1)
29. then substitute E by E1; (DMin.3)
30. fi
31. else // E has at least two arguments
32. if (E is alternating and both its first argument

and its last argument are ↓-arguments)
33. then substitute E by a minimal ↓-expression E′

satisfying E′ ≡ E; (proc. RotateToMinimal) (DMin.6)
34. fi
35. fi
36. fi
37. }

Figure 2. Pseudo-code of the recursive function MakeMinimal.

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 211

These instructions will be worked out in detail later, by the procedures mentioned between the brackets.
Each substitution in the function is justified by the violation of a particular property from Theorem 10.

Such a violation implies that the DNA expression is not (yet) minimal. In the pseudo-code, we indicate
the properties involved.

As a result of subsequent substitutions, the DNA expression gets more and more of the properties.
In the end, it has all six properties and thus is minimal. This will become clearer, when we apply the
function to an example DNA expression. If the original DNA expression is minimal already (and thus
has the six properties), then it is not modified by the function MakeMinimal at all.

In order to understand one of the steps in MakeMinimal, it is useful to first establish that under
certain conditions, a DNA expression is nick free, if and only it is alternating.

Lemma 11. Let E be an ↑-expression with Properties (DMin.2), (DMin.4) and (DMin.5). Then E is nick
free, if and only if E is alternating.

There is of course an analogous result for ↓-expressions. In particular, for a minimal ↑-expression (or
↓-expression), the adjectives ‘nick free’ and ‘alternating’ are equivalent.

Proof: Let E = ⟨↑ ε1 . . . εn⟩, where n ≥ 1 and ε1, . . . , εn are N -words and DNA expressions.
By definition, the operators ↑ and ↓ may only introduce nick letters between consecutive expression-

arguments. By Property (DMin.4), the arguments of E are nick free. Any nick in E must be introduced
by the outermost operator ↑. If E is alternating, then E is certainly nick free.

Now assume that E is not alternating, i.e., that it has two consecutive expression-arguments εi and
εi+1. By Property (DMin.2), these are ↕-expressions and/or ↓-expressions. If εi is an ↕-expression, then
by definition R(S(εi)) ∈ A±. If, on the other hand, εi is a ↓-expression, then by Property (DMin.5),
its last argument is an N -word α or an ↕-expression ⟨↕ α⟩. It cannot be an N -word α, because in that
case, the arguments εi and εi+1 of E would not fit together by upper strands, which is required for an
↑-expression. Hence, the last argument of εi is an ↕-expression ⟨↕ α⟩, and again R(S(εi)) ∈ A±.

Analogously, we find that L(S(εi+1)) ∈ A±, both if εi+1 is an ↕-expression, and if it is a ↓-
expression. This implies that the outermost operator ↑ of E introduces a lower nick letter between
εi and εi+1.

The instructions in lines 9, 17, 20 and 33 are not precisely specified. Each of them requires find-
ing a minimal DNA expression satisfying certain requirements. In the context of these instructions in
MakeMinimal, this can be implemented by local, non-recursive rearrangements of the DNA expression
at hand. Before giving more details of how this is achieved, we explain why (additional) recursive calls
of MakeMinimal would not be appropriate.

For line 9, we need to find a minimal DNA expression E′ satisfying E′ ≡ E. Although this is exactly
what the function MakeMinimal is meant for, a recursive call MakeMinimal(E) would not work at this
point. It would trigger an infinite sequence of recursive calls of the function, with the same argument E.

The minimal DNA expression E′
i that we substitute in line 17 is not equivalent to Ei. As follows

from Lemma 11, Ei contains nicks, whereas E′
i must be nick free. Because the function MakeMinimal

yields an equivalent, minimal DNA expression, it is not applicable. Apart from that, it would not make
sense to call the function here, because we have just done so in line 15.

In line 20, we do not just need any equivalent, minimal DNA expression, but we need one of a par-
ticular type: an ↑-expression E′

i for a ↓-expression Ei. MakeMinimal does not make this distinction. In

212 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

fact, as a result of lines 15–18, the ↓-expression Ei is minimal already. Hence, a call MakeMinimal(Ei)
would simply yield Ei. It would never produce the desired ↑-expression.

Although the situation in line 33 looks similar, the actual problem is more serious. Just like in
line 9, a call MakeMinimal(E) there would start an infinite sequence of recursive calls, with the same
argument E.

We now work out the instructions in lines 9, 17, 20 and 33. In line 9, we have an ↕-expression
E = ⟨↕ E1⟩, where E1 is a minimal ↑-expression or ↓-expression. We need a minimal DNA expression
E′ satisfying E′ ≡ E. We use a procedure Make↕ExprMinimal for this.

In order to describe this procedure, we need one more definition. Let E be an arbitrary DNA expres-
sion, and let α1, . . . , αk for some k ≥ 1 be the N -words occurring in E, in the order of their occurrence.
Then αE = α′

1 . . . α
′
k, where

α′
i =

{
αi if the parent operator of αi in E is ↕ or ↑

c(αi) if the parent operator of αi in E is ↓
(i = 1, . . . , k).

Hence, we concatenate the N -words occurring in E, possibly after complementation. Intuitively, αE

corresponds to the nucleotides in the upper strand of the complemented version of S(E). For example,
for the DNA expression E2 from (6), αE2 = c(α1)α2α3α4.

Now, Make↕ExprMinimal is given in Figure 3, for the case that E1 is an ↑-expression. In the original
↕-expression E = ⟨↕ E1⟩, we first apply ↑ (the outermost operator of E1) and then ↕ (the outermost
operator of E). That is, we first combine the arguments of E1 into one molecule, and then complement
the result. The idea behind the result E′ of Make↕ExprMinimal is just the reverse: we first complement
the arguments of E1, and then combine the results into one molecule. Of course, in the first step, we do
not have to complement ↕-arguments of E1, as these are complemented already. By Property (DMin.2),
the minimal ↑-expression E1 does not have ↑-arguments. Hence, in lines M↕M.4–M↕M.6 and lines
M↕M.7–M↕M.18, we only complement the ↓-arguments and the N -word-arguments.

In line 17 of MakeMinimal, we have a minimal ↓-expression Ei which is not alternating. As men-
tioned, Ei contains nicks, and we need a minimal, nick free DNA expression E′

i satisfying E′
i ≡▽ Ei.

For this, we use a procedure Denickify, which we describe in Figure 4.
First, in lines Dni.4–Dni.19, we make the DNA expression alternating and thus, by Lemma 11,

nick free. We do this by combining pairs of consecutive expression-arguments into single expression-
arguments. Once the DNA expression is alternating, we may have to perform a simple post-processing
step to make it minimal again. Line Dni.24 will be implemented by the same procedure RotateToMinimal
that we use for lines 20 and 33 of MakeMinimal. Each substitution in procedure Denickify can be
achieved by a few insertions and removals of brackets and operators in the DNA expression.

The only instructions left to be worked out are the ones in lines 20 and 33 of MakeMinimal, and the
one in line Dni.24 of Denickify. Because in general, rewriting ↑-expressions is analogous to rewriting
↓-expressions, these instructions are similar. A single procedure, called RotateToMinimal,3 suffices
for their implementation. In Figure 5, we give this procedure for ↓-expressions.

We illustrate the different steps in MakeMinimal by means of an example DNA expression.

3The structure of a DNA expression can be visualized by a tree. The name RotateToMinimal refers to the effect on the tree
that corresponds to the effect of the procedure on the DNA expression: one or two tree rotations (see, e.g., Section 14.2 in [5]).

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 213

M↕M.1. Make↕ExprMinimal (E)
// rewrites an ↕-expression E = ⟨↕ E1⟩ whose argument E1

// is a minimal ↑-expression, into a minimal DNA expression E′

// satisfying E′ ≡ E
M↕M.2. {
M↕M.3. Ê1 = E1;

M↕M.4. for all ↓-arguments E1,i of Ê1 (in some order)

M↕M.5. do substitute E1,i in Ê1 by
⟨
↕ αE1,i

⟩
;

M↕M.6. od
// arguments of Ê1 are N-words α1,i and ↕-expressions ⟨↕ α1,i⟩

M↕M.7. for all N-word-arguments α1,i of Ê1 (in some order)
M↕M.8. do if (α1,i is preceded by an argument ⟨↕ α1,i−1⟩)
M↕M.9. then if (α1,i is succeeded by an argument ⟨↕ α1,i+1⟩)
M↕M.10. then substitute ⟨↕ α1,i−1⟩α1,i ⟨↕ α1,i+1⟩ in Ê1

by ⟨↕ α1,i−1α1,iα1,i+1⟩;
M↕M.11. else substitute ⟨↕ α1,i−1⟩α1,i in Ê1 by ⟨↕ α1,i−1α1,i⟩;
M↕M.12. fi
M↕M.13. else if (α1,i is succeeded by an argument ⟨↕ α1,i+1⟩)
M↕M.14. then substitute α1,i ⟨↕ α1,i+1⟩ in Ê1 by ⟨↕ α1,iα1,i+1⟩;
M↕M.15. else substitute α1,i in Ê1 by ⟨↕ α1,i⟩;
M↕M.16. fi
M↕M.17. fi
M↕M.18. od

// Ê1 = ⟨↑ ⟨↕ α1,1⟩ . . . ⟨↕ α1,m⟩⟩ for some m ≥ 1
// and N-words α1,1, . . . , α1,m

M↕M.19. if (m == 1)

M↕M.20. then substitute Ê1 by ⟨↕ α1,1⟩; (DMin.3)
M↕M.21. fi
M↕M.22. E′ = Ê1;
M↕M.23. }

Figure 3. Pseudo-code of the procedure Make↕ExprMinimal.

Example 12. Let

E = ⟨↓⟨↑ α1 ⟨↕ ⟨↑ α2 ⟨↕ ⟨↕ α3⟩⟩⟩⟩⟩
⟨↑ ⟨↓ α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↓ ⟨↕ α7⟩ ⟨↕ α8⟩⟩⟩⟩α9 ⟨↑ ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩⟩ ⟩ ,

(17)

which denotes the formal DNA molecule from (9). The ↕-subexpression Es = ⟨↕ ⟨↕ α3⟩⟩ has as its
argument the (minimal) ↕-expression E1 = ⟨↕ α3⟩, and thus violates Property (DMin.1). Indeed, applying
the same operator ↕ to the same argument for a second time, does not change the result. According to
line 7, Es is substituted by E1, yielding

E = ⟨↓⟨↑ α1 ⟨↕ ⟨↑ α2 ⟨↕ α3⟩⟩⟩⟩
⟨↑ ⟨↓ α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↓ ⟨↕ α7⟩ ⟨↕ α8⟩⟩⟩⟩α9 ⟨↑ ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩⟩ ⟩ .

214 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

Dni.1. Denickify (Ei)
// rewrites a minimal ↓-expression Ei which is not alternating,
// into a minimal, nick free DNA expression E′

i
// satisfying E′

i ≡▽ Ei;
Dni.2. {
Dni.3. Êi = Ei;

Dni.4. while (Êi is not alternating)

Dni.5. do select two consecutive expression-arguments ε̂j and ε̂j+1 of Êi;
Dni.6. if (ε̂j is an ↑-expression

⟨
↑ . . .

⟨
↕ αj,mj

⟩⟩
)

Dni.7. then if (ε̂j+1 is an ↑-expression ⟨↑ ⟨↕ αj+1,1⟩ . . .⟩)
Dni.8. then substitute ε̂j ε̂j+1 in Êi

by
⟨
↑ . . .

⟨
↕ αj,mjαj+1,1

⟩
. . .

⟩
;

Dni.9. else // ε̂j+1 is an ↕-expression ⟨↕ αj+1,1⟩
Dni.10. substitute ε̂j ε̂j+1 in Êi

by
⟨
↑ . . .

⟨
↕ αj,mjαj+1,1

⟩⟩
;

Dni.11. fi
Dni.12. else // ε̂j is an ↕-expression ⟨↕ αj,1⟩
Dni.13. if (ε̂j+1 is an ↑-expression ⟨↑ ⟨↕ αj+1,1⟩ . . .⟩)
Dni.14. then substitute ε̂j ε̂j+1 in Êi

by ⟨↑ ⟨↕ αj,1αj+1,1⟩ . . .⟩;
Dni.15. else // ε̂j+1 is an ↕-expression ⟨↕ αj+1,1⟩
Dni.16. substitute ε̂j ε̂j+1 in Êi

by ⟨↕ αj,1αj+1,1⟩;
Dni.17. fi
Dni.18. fi
Dni.19. od

// Êi is alternating

Dni.20. if (Êi has only one argument Ei,1 left)

Dni.21. then substitute Êi by Ei,1; (DMin.3)

Dni.22. else // Êi has at least two arguments

Dni.23. if (both the first argument and the last argument of Êi
are ↑-arguments)

Dni.24. then substitute Êi by a minimal ↑-expression Ê′
i

satisfying Ê′
i ≡ Êi; (proc. RotateToMinimal) (DMin.6)

Dni.25. fi
Dni.26. fi
Dni.27. E′

i = Êi;
Dni.28. }

Figure 4. Pseudo-code of the procedure Denickify.

The ↕-subexpression Es = ⟨↕ ⟨↑ α2 ⟨↕ α3⟩⟩⟩ has as its argument the (minimal) ↑-expression E1 =
⟨↑ α2 ⟨↕ α3⟩⟩, and thus also violates Property (DMin.1). According to line 9, Es is substituted by the
result of procedure Make↕ExprMinimal.

Ê1 = E1 does not have ↓-arguments, but it has a single N -word-argument α2. According to line
M↕M.14, the arguments α2 ⟨↕ α3⟩ are substituted in Ê1 by ⟨↕ α2α3⟩. As a result, the ↑-expresion Ê1

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 215

RtM.1. RotateToMinimal (E)
// locally rewrites an alternating ↓-expression E = ⟨↓ ε1 . . . εn⟩
// with Properties (DMin.1)-(DMin.5), for which either the first
// argument ε1 or the last argument εn (or both) is an ↑-argument,
// into a minimal ↑-expression E′ satisfying E′ ≡ E

RtM.2. {
RtM.3. if (ε1 is an ↑-expression ⟨↑ ε1,1 . . . ε1,m1−1ε1,m1⟩)
RtM.4. then if (εn is an ↑-expression ⟨↑ εn,1εn,2 . . . εn,mn⟩)
RtM.5. then E′ = ⟨↑ ε1,1 . . . ε1,m1−1 ⟨↓ ε1,m1ε2 . . . εn−1εn,1⟩ εn,2 . . . εn,mn⟩;
RtM.6. else E′ = ⟨↑ ε1,1 . . . ε1,m1−1 ⟨↓ ε1,m1ε2 . . . εn−1εn⟩⟩;
RtM.7. fi
RtM.8. else // εn must be an ↑-expression ⟨↑ εn,1εn,2 . . . εn,mn⟩
RtM.9. E′ = ⟨↑ ⟨↓ ε1ε2 . . . εn−1εn,1⟩ εn,2 . . . εn,mn⟩;
RtM.10. fi
RtM.11. }

Figure 5. Pseudo-code of the procedure RotateToMinimal.

has m = 1 argument left, which is an ↕-argument. It thus violates Property (DMin.3). According to line
M↕M.20, Ê1 is substituted by this argument, yielding E′ = Ê1 = ⟨↕ α2α3⟩. Indeed, E′ is a minimal
DNA expression satisfying E′ ≡ Es. This yields

E = ⟨↓⟨↑ α1 ⟨↕ α2α3⟩⟩
⟨↑ ⟨↓ α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↓ ⟨↕ α7⟩ ⟨↕ α8⟩⟩⟩⟩α9 ⟨↑ ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩⟩ ⟩ .

The third argument of the ↑-subexpression Es = ⟨↑ ⟨↕ α5⟩α6 ⟨↓ ⟨↕ α7⟩ ⟨↕ α8⟩⟩⟩ is the (minimal) ↓-
expression E3 = ⟨↓ ⟨↕ α7⟩ ⟨↕ α8⟩⟩. The occurrence of the operator ↓ in E3 is an inner occurrence in Es.
Because the operator is not alternating, it violates Property (DMin.4).

E3 denotes
(α7

c(α7)

)▽(α8

c(α8)

)
, and thus is not nick free. The occurring upper nick letter is removed by

the outermost operator ↑ of Es. According to line 17 of MakeMinimal, E3 is substituted in Es by the
result of procedure Denickify.

Ê3 = E3 has one pair of consecutive expression-arguments ⟨↕ α7⟩ and ⟨↕ α8⟩. According to line
Dni.16, they are substituted in Ê3 by ⟨↕ α7α8⟩. As a result, the ↓-expression Ê3 has one argument left,
which is an ↕-argument. It is (trivially) alternating, but violates Property (DMin.3). According to line
Dni.21, Ê3 is substituted by its argument, yielding E′

3 = Ê3 = ⟨↕ α7α8⟩. Indeed, this is a minimal, nick
free DNA expression satisfying E′

3 ≡▽ E3. This yields

E = ⟨↓ ⟨↑ α1 ⟨↕ α2α3⟩⟩ ⟨↑ ⟨↓ α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩⟩⟩α9 ⟨↑ ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩⟩⟩ .

The first argument of the ↑-subexpression

Es = ⟨↑ ⟨↓ α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩⟩⟩α9 ⟨↑ ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩⟩

is the (minimal) alternating ↓-expression E1 = ⟨↓ α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩⟩⟩, whose last argument is
an ↑-argument. The occurrence of the operator ↓ in E1 is an inner occurrence in Es, and thus vio-
lates Property (DMin.5). According to line 20 of function MakeMinimal and line RtM.9 of procedure

216 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

RotateToMinimal, E1 is substituted in Es by the (minimal) ↑-expression E′
1 = ⟨↑ ⟨↓ α4 ⟨↕ α5⟩⟩α6

⟨↕ α7α8⟩⟩, yielding

E = ⟨↓ ⟨↑ α1 ⟨↕ α2α3⟩⟩ ⟨↑ ⟨↑ ⟨↓ α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩⟩α9 ⟨↑ ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩⟩⟩ .

Note that the first argument ⟨↓ α4 ⟨↕ α5⟩⟩ of the ↑-expression E′
1 is a ↓-expression. Hence, the occur-

rence of ↑ in E′
1, which is an inner occurrence in the resulting DNA expression E, also violates Prop-

erty (DMin.5). It is not hard to prove that this is the case in general, after application of instruction 20 of
MakeMinimal. This is, however, resolved in the next step.

The first argument of the ↑-subexpression

Es = ⟨↑ ⟨↑ ⟨↓ α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩⟩α9 ⟨↑ ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩⟩

is the (minimal) ↑-expression E1 = ⟨↑ ⟨↓ α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩⟩. Hence, Es violates Property (DMin.2).
According to line 23, E1 is substituted in Es by its arguments, yielding

E = ⟨↓ ⟨↑ α1 ⟨↕ α2α3⟩⟩ ⟨↑ ⟨↓ α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩α9 ⟨↑ ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩⟩⟩ .

The ↑-subexpression
Es = ⟨↑ ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩

has exactly one argument, the (minimal) ↓-expression E1 = ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩. Hence, Es violates
Property (DMin.3). Because E1 is alternating and thus nick free, the outermost operator ↑ of Es does not
have any effect on the semantics, and Es ≡ E1. According to line 29, Es is substituted by E1, yielding

E = ⟨↓ ⟨↑ α1 ⟨↕ α2α3⟩⟩ ⟨↑ ⟨↓ α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩α9 ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩⟩ .

The arguments of the ↑-subexpression

Es = ⟨↑ ⟨↓ α4 ⟨↕ α5⟩⟩α6 ⟨↕ α7α8⟩α9 ⟨↓ ⟨↕ α10⟩α11 ⟨↕ α12⟩⟩⟩

are N -word-arguments and (minimal) expression-arguments, alternately, and both the first argument and
the last argument are ↓-arguments. Consequently, Es is not a minimal DNA subexpression, because its
outermost operator ↑ violates Property (DMin.6). Moreover, this occurrence of ↑ is an inner occurrence
in E. Therefore, in the context of E, it violates Property (DMin.5). According to line 33 of function
MakeMinimal and line RtM.5 of (the analogue for ↑-expressions of) procedure RotateToMinimal, Es

is substituted by the (minimal) ↓-expression

Es′ = ⟨↓ α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩ ,

yielding

E = ⟨↓ ⟨↑ α1 ⟨↕ α2α3⟩⟩ ⟨↓ α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩⟩ .

The second argument of the ↓-expression E is the (minimal) ↓-expression

E2 = ⟨↓ α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩ .

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 217

Hence, E violates Property (DMin.2), and according to (the analogue for ↓-expressions of) line 23, E2 is
substituted by its arguments, yielding

E = ⟨↓ ⟨↑ α1 ⟨↕ α2α3⟩⟩α4 ⟨↑ ⟨↕ α5⟩α6 ⟨↕ α7α8⟩α9 ⟨↕ α10⟩⟩α11 ⟨↕ α12⟩⟩ .

This DNA expression has all six properties from Theorem 10, and thus is minimal. It is the final result
of the recursive function MakeMinimal, when applied to the original DNA expression in (17) at the start
of this example. It equals DNA expression Ec from (15), which we obtained from the semantics of the
DNA expression, using Theorem 7.

Note that for many of the substitutions we performed in the above example, the original DNA subex-
pression resembled one of the DNA expressions in the second column of Table 1, in a row for the property
involved. In those cases, the result indeed resembled the corresponding minimal DNA expression in the
fourth column.

5. Correctness and complexity of the algorithm

For the DNA expression from (17), the recursive function MakeMinimal correctly produces an equiva-
lent, minimal DNA expression. In this section, we establish the correctness of MakeMinimal for arbi-
trary DNA expressions. We subsequently analyse its complexity. We first consider the correct perfor-
mance of the three procedures used by the function.

Lemma 13. Let E = ⟨↕ E1⟩ be an ↕-expression whose argument E1 is a minimal ↑-expression.
Then the string E′ resulting from procedure Make↕ExprMinimal is a minimal DNA expression

satisfying E′ ≡ E. Moreover, E′ is independent of the orders in which ↓-arguments and N -word-
arguments are considered in lines M↕M.4 and M↕M.7, respectively.

Proof: We establish that throughout the first for-loop in Make↕ExprMinimal, Ê1 remains a minimal
↑-expression satisfying

⟨
↕ Ê1

⟩
≡ E. First, we observe that Ê1 remains a DNA expression (and thus, an

↑-expression), when we substitute a ↓-argument E1,i by
⟨
↕ αE1,i

⟩
: an ↕-argument fits together by upper

strands with whatever argument preceding or succeeding it. Second, we note that before the substitution
of E1,i, Ê1 has all properties from Theorem 10. It is easy to verify that it still has these properties after
the substitution, and thus is minimal.

Finally, we check that the semantics of
⟨
↕ Ê1

⟩
is not changed by the substitution of E1,i. This check

consists of two parts: (1) We check that the (lower) nick letters in S(
⟨
↕ Ê1

⟩
) (which are introduced by

the outermost operator of Ê1) are the same before and after the substitution. (2) As for the A-letters in
S(

⟨
↕ Ê1

⟩
), we observe, that it does not matter for the semantics, when exactly we complement N -words

occurring in E1,i. That is, whether we do this with the outermost operator ↕ of
⟨
↕ Ê1

⟩
(as we do before

the substitution), or that we do this with the operator ↕ in
⟨
↕ αE1,i

⟩
(as we do after the substitution).

We subsequently consider the second for-loop in Make↕ExprMinimal. We establish that through-
out this loop Ê1 remains an ↑-expression whose only arguments are N -words α1,i and ↕-expressions

⟨↕ α1,i⟩ for N -words α1,i, and which still satisfies
⟨
↕ Ê1

⟩
≡ E. The validity of the final equivalence

218 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

follows from the observation that the operator ↑ never introduces nick letters before or after an N -word-
argument. This holds in particular for the outermost operator ↑ of Ê1 before the substitution of an
N -word-argument.

After the second for-loop, Ê1 = ⟨↑ ⟨↕ α1,1⟩ . . . ⟨↕ α1,m⟩⟩ for some m ≥ 1 and N -words α1,1, . . . , α1,m.

In S(Ê1), there are no single strands left to be complemented. Hence, Ê1 ≡
⟨
↕ Ê1

⟩
≡ E. It is easily

verified that if m ≥ 2, then Ê1 has all properties from Theorem 10 and thus is minimal. If, on the
other hand, m = 1, then the outermost operator ↑ of Ê1 has no effect. Hence Ê1 ≡ ⟨↕ α1,1⟩, which, by
Theorem 3, is minimal.

It follows from Example 9 and Theorem 3, that in both cases, the result E′ is the unique minimal
DNA expression denoting S(E). In particular, it is independent of the orders in which ↓-arguments and
N -word-arguments are considered in the two for-loops.

Lemma 14. Let Ei be a minimal ↓-expression which is not alternating.
Then the string E′

i resulting from procedure Denickify is a minimal, nick free DNA expression
satisfying E′

i ≡▽ Ei. Moreover, E′
i is independent of the order in which pairs of consecutive expression-

arguments ε̂j and ε̂j+1 are selected in line Dni.5.

Proof: We establish that throughout the while-loop, Êi is a ↓-expression satisfying Êi ≡▽ Ei, Êi has
at least one expression-argument, has Properties (DMin.1), (DMin.2), (DMin.4) and (DMin.5), and each
inner occurrence of ↑ or ↓ has at least two arguments. By Lemma 11, Êi is nick free, if and only if it
is alternating. Before every iteration of the loop, Êi has at least two consecutive expression-arguments.
This implies that Êi is not nick free. Moreover, at that moment it also has Properties (DMin.3) and
(DMin.6), and thus is minimal.

We verify that the expression-arguments ε̂j and ε̂j+1 selected in line Dni.5 are ↕-expressions or ↑-
expressions of the forms considered in the if-then-else construction in lines Dni.6–Dni.18 (cf. the proof
of Lemma 11). The left (or right) end of the expression-argument that we substitute for ε̂j ε̂j+1 is equal
to the left end of ε̂j (the right end of ε̂j+1). Hence, after the substitution, the arguments of Êi still fit
together by lower strands, and hence, Êi is still a DNA expression. It follows from the definition of a
↓-expression that the only difference in the semantics of Êi, is that before the substitution, there was an
upper nick letter between ε̂j and ε̂j+1, which is no longer present after the substitution. In particular,
Êi ≡▽ Ei remains valid.

After the while loop, Êi is alternating, but does not necessarily have Properties (DMin.3) and (DMin.6),
anymore. This is made up for in the if-then-else construction following the loop. If Êi has only one
argument left, then this must be a (minimal, nick free) DNA expression Ei,1 and the outermost operator
↓ has no effect. Hence, Êi ≡ Ei,1. Otherwise, Êi has at least Properties (DMin.1)–(DMin.5). If necessary,
we use procedure RotateToMinimal to also acquire Property (DMin.6).

In order to establish that the resulting DNA expression E′
i is independent of the order in which we

select consecutive expression-arguments, we first observe that the expression-arguments in the original
↓-expression Ei are split up over one or more subsequences of consecutive expression-arguments, which
are separated by N -word-arguments. In Êi after the while-loop, each of this subsequences has been
substituted by a single expression-argument, and the result for one subsequence is independent of the
result for another. We therefore examine what happens to a single subsequence of expression-arguments

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 219

εj0 . . . εj1 with j0 < j1. Let us use ε′j1 to denote the corresponding single expression-argument of Êi

after the while-loop.
If each εj in the subsequence is an ↕-expression, then it is not hard to see that ε′j1 is also an ↕-

expression, which is independent of the order in which pairs of consecutive expression-arguments from
εj0 . . . εj1 have been selected.

If, on the other hand, at least one of the εj’s is an ↑-expression, then we can prove by induction that ε′j1
is a minimal, nick free ↑-expression, which satisfies ε′j1 ≡▽ ⟨↓ εj0 . . . εj1⟩, and whose ↓-arguments are
exactly the ↓-arguments of εj0 , . . . , εj1 . In fact, these ↓-arguments determine a lower block partitioning
of S(ε′j1). Now, ε′j1 is completely determined by the construction from Theorem 7. In particular, it does
not depend on the order in which pairs of arguments from εj0 . . . εj1 have been selected. Then the same
goes for the complete ↓-expression Êi after the while-loop, and for the final result E′

i.

Lemma 15. Let E be an alternating ↓-expression with Properties (DMin.1)–(DMin.5), for which either
the first argument or the last argument (or both) is an ↑-argument.

Then the string E′ resulting from procedure RotateToMinimal is a minimal ↑-expression satisfying
E′ ≡ E.

Proof: We first use the definition of (the semantics of) a DNA expression to prove that the string E′ is
indeed a DNA expression, and that S(E′) and S(E) are the same, possibly apart from nick letters. That
is, S(E′) may contain nick letters not occurring in S(E) and vice versa.

We subsequently establish that E′ is alternating and has Properties (DMin.1)–(DMin.5), just like E.
In particular, because E and E′ are alternating and have Property (DMin.4), both of them are nick free.
This implies that S(E′) really equals S(E).

We finally observe that E′ also has Property (DMin.6). Hence, E′ has all properties from Theorem 10,
and thus is minimal.

We now get to the recursive function MakeMinimal itself.

Theorem 16. For each DNA expression E∗
1 , the function MakeMinimal produces an equivalent, mini-

mal DNA expression E∗
2 . 4

Proof: We use induction by the number of operators occurring in E∗
1 . If E∗

1 contains only one operator,
then either E∗

1 = ⟨↕ α1⟩, or E∗
1 = ⟨↑ α1⟩, or E∗

1 = ⟨↓ α1⟩ for an N -word α1. It is easily verified that
in this case, E∗

1 is minimal itself, and that E∗
2 = E∗

1 . Given that MakeMinimal produces an equivalent,
minimal DNA expression for DNA expressions containing at most p operators, we must prove that it also
does so if E∗

1 contains p+ 1 operators. For this, we examine the effects of the various substitutions that
are carried out in MakeMinimal.

In lines 5–11, we have an ↕-expression E with an expression-argument E1. By the induction hypoth-
esis, the recursive call in line 5 makes E1 minimal without changing the semantics.

In line 7, E1 is a (minimal) ↕-expression. Substituting E by E1, i.e., skipping the outermost operator
↕ of E, does not effect the semantics, and leaves a minimal DNA expression.

4The reason for using the notation E∗
1 and E∗

2 to denote the input and the output of MakeMinimal, is that we want to clearly
distinguish these DNA expressions from the ‘running DNA expression’ E and the expression-arguments Ei occurring in the
function.

220 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

In line 9, E1 is a (minimal) ↑-expression or ↓-expression. Indeed, procedure Make↕ExprMinimal (or
its analogue for a ↓-expression E1) is applicable to E, and yields an equivalent, minimal DNA expres-
sion E′.

In lines 13–35, we have an ↑-expression E. In the for-loop, we consider the expression-arguments
Ei and perform at most four actions on them. We now establish that throughout the loop, E remains an
↑-expression that is equivalent to the original DNA expression E∗

1 .
By the induction hypothesis, the recursive call in line 15 makes Ei minimal, without changing its

semantics.
Now, if Ei is a (minimal) ↓-expression which is not alternating, then by (the analogue for ↓-expressions

of) Lemma 11, Ei is not nick free. In fact, S(Ei) contains upper nick letters. In the context of E, these
upper nick letters are removed by the outermost operator ↑ of E. Hence, S(E) is not affected by line 17,
where we substitute Ei by a minimal, nick free DNA expression E′

i satisfying E′
i ≡▽ Ei. Indeed, proce-

dure Denickify yields such a DNA expression. The new argument E′
i may be any type of expression-

argument. However, if it is an ↑-argument or a ↓-expression, then it is alternating. As a result, after lines
16–18, Ei is still minimal and if Ei is a ↓-expression, then it is certainly alternating.

If, in line 19, Ei is a (minimal, alternating) ↓-expression for which the first argument or the last
argument is an ↑-argument, then procedure RotateToMinimal is applicable and indeed yields a minimal
↑-expression E′

i satisfying E′
i ≡ Ei. Hence, after lines 19–21, Ei is still minimal, and if Ei is a ↓-

expression, then it is alternating and neither its first argument nor its last argument is an ↑-argument. In
this case, by Properties (DMin.1) and (DMin.2) from Theorem 10,
• the first argument of Ei is an N -word α or an ↕-expression ⟨↕ α⟩, and
• the last argument of Ei is an N -word α or an ↕-expression ⟨↕ α⟩.

If (by now) Ei is an ↑-expression, then in line 23 we substitute Ei by its arguments. That is, we
skip the outermost operator of Ei. This does not affect S(E), because the effect of the skipped operator
is now achieved by the outermost operator ↑ of E. After this, however, we can no longer speak of an
expression-argument Ei, but we can speak of the argument(s) corresponding to Ei. Because Ei was a
minimal ↑-expression, by Theorem 10, the arguments corresponding to Ei are minimal, there is no ↑-
expression among these arguments, and if any of these arguments is a ↓-expression, then it is alternating
and
• its first argument is an N -word α or an ↕-expression ⟨↕ α⟩, and
• its last argument is an N -word α or an ↕-expression ⟨↕ α⟩.

Obviously, all of this also holds after lines 22–24, if Ei was not an ↑-expression. In that case the only
argument corresponding to Ei is Ei itself.

As a result of all this, it is easily verified that after the for-loop, E is an ↑-expression satisfying
E ≡ E∗

1 , whose expression-arguments are minimal and nick free, and which has Properties (DMin.1),
(DMin.2), (DMin.4) and (DMin.5).

In lines 28–30, E in addition has only one argument ε1. If ε1 is a (minimal, nick free) expression-
argument E1, then the outermost operator ↑ of E does not have any effect. Hence, substituting E by E1,
i.e., skipping this operator ↑, as we do in line 29, leaves an equivalent, minimal DNA expression. If, on
the other hand, ε1 is an N -word α1, then E = ⟨↑ α1⟩ is minimal already.

In lines 32–34, E has at least two arguments. We observe that none of the arguments of E can be of
the form ⟨↓ α⟩, because in that case, the arguments of E would not fit together by upper strands. As a
result, E also has Property (DMin.3).

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 221

⟨ ↑ ⟨ ↕ ⟨ ↕α1 ⟩ ⟩ ⟨ ↓ ⟨ ↑α2 ⟨ ↕α3 ⟩ ⟩α4 ⟨ ↕α5 ⟩ ⟩ ⟩
(a)

⟨ ↑ ⟨ ↕ ⟨ ↕α1 ⟩ ⟩ ⟨ ↓ ⟨ ↑α2 ⟨ ↕α3 ⟩ ⟩α4 ⟨ ↕α5 ⟩ ⟩ ⟩� � � � � � � � � �� � � � � � �� �& %
(b)

⟨ ↑ ⟨ ↕α1 ⟩α2 ⟨ ↓ ⟨ ↕α3 ⟩α4 ⟨ ↕α5 ⟩ ⟩α6 ⟨ ↕α7 ⟩ ⟨ ↕α8 ⟩ ⟨ ↑ ⟨ ↕α9 ⟩ ⟨ ↕α10⟩ ⟩ ⟩� �
 	 ��� �� �� �� �� �
(c)

⟨ ↑ ⟨ ↕α1 ⟩α2 ⟨ ↓ ⟨ ↕α3 ⟩α4 ⟨ ↕α5 ⟩ ⟩α6 ⟨ ↕α7 ⟩ ⟨ ↕α8 ⟩ ⟨ ↑ ⟨ ↕α9 ⟩ ⟨ ↕α10⟩ ⟩ ⟩�� � �
 	� �� �� �
(d)

Figure 6. Data structure used in the implementation of the algorithm for minimality. (a) First feature for an
example DNA expression: the letters are stored in a doubly-linked list (indicated by the dashes). (b) Second
feature for the same DNA expression: corresponding brackets are connected, and the first letter and the last letter
of each N -word are connected. (c) Third feature for an example DNA expression: each occurrence of ↑ or ↓ has
a circular, doubly-linked list of its non-↕-arguments. Note that the list is empty for the last occurrence of ↑. (d)
Fourth feature for the same DNA expression: each occurrence of ↑ or ↓ has a circular, doubly-linked list of its
consecutive expression-arguments. Note that the list is empty for the only occurrence of ↓.

If E is alternating and both its first argument and its last argument are ↓-arguments, then (the analogue
for ↑-expressions of) procedure RotateToMinimal is applicable and the substitution in line 33 yields an
equivalent, minimal DNA expression.

Otherwise, there are two possibilities: (1) E is not alternating, i.e., it has two consecutive expression-
arguments. (2) E is alternating and either its first argument or its last argument (or both) is not a ↓-
argument. In this case, the argument(s) concerned must be an N -word α or an ↕-expression ⟨↕ α⟩. We
conclude that E also has Property (DMin.6). Hence, it has all properties from Theorem 10 and thus is
minimal already.

With a proper data structure, the function MakeMinimal can be carried out efficiently. We propose
a data structure with four features. First, it is useful to store (the letters of) E in a doubly-linked list.
Then letters can be inserted and removed in constant time. This feature is depicted for an example DNA
expression in Figure 6(a).

It is also important that we can easily approach the positions in the DNA expression where operations
like insertions and removals must be performed. In particular, it is useful if we can step directly from,
for example, the first letter to the last letter of an argument, and vice versa. This is the second feature
of the data structure: we connect each opening bracket to the corresponding closing bracket, and for
each N -word-argument of an operator, we connect the first letter to the last letter. We establish such
connections both from left to right and from right to left. In Figure 6(b), we show these connections for
an example DNA expression.

The third feature is useful to carry out procedure Make↕ExprMinimal efficiently. In this procedure,
we wish to complement the non-↕-arguments of an ↑-expression (or a ↓-expression) E1, i.e., the argu-

222 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

ments that are not yet complemented. It is important that we can quickly find these arguments. Therefore,
for each occurrence of ↑ or ↓ in E we maintain a circular, doubly-linked list of its non-↕-arguments. In
fact, the list contains (the positions of) the first letters of these arguments. In Figure 6(c), we have
depicted the lists for all occurrences of ↑ and ↓ in an example DNA expression.

The fourth feature of the data structure is meant to carry out procedure Denickify efficiently. In
this procedure, we wish to combine pairs of consecutive expression-arguments into single expression-
arguments. For this, we must be able to quickly find these pairs. Therefore, for each occurrence of ↑ or
↓ in E, we maintain a circular, doubly-linked list of its consecutive expression-arguments. To be more
precise: for each expression-argument ε̂j of the operator, which is succeeded by another expression-
argument ε̂j+1, the list contains the position of the first letter of ε̂j+1 (which is an opening bracket). In
Figure 6(d), we show the lists for all occurrences of ↑ and ↓ in an example DNA expression.

All connections can be initialized in linear time, e.g., in a recursive pass through the DNA expression.
For any (basic) operation applied to E, the connections can be updated in constant time.5 We conclude
that the overhead for maintaining the four types of connections is linear in the time required for the
function MakeMinimal itself. As an illustration, we examine the effects on the data structure for one of
the substitutions in MakeMinimal:

Example 17. Let E be an ↑-expression which has a minimal ↑-argument Ei. In line 23 of MakeMinimal,
we substitute Ei in E by its arguments. This implies that the brackets enclosing Ei and its operator ↑ are
removed. We use the second feature of the data structure to find the closing bracket corresponding to the
opening bracket of Ei. We use the first feature of the data structure to do the actual removals.

Because of the substitution, the non-↕-argument Ei must be removed from the list of non-↕-arguments
of E (the third feature). On the other hand, the list of non-↕-arguments of Ei must be inserted into the
list for E, as these non-↕-arguments become arguments of E. If Ei was preceded in E by an N -word-
argument αi−1 and the first argument of Ei itself was an N -word-argument αi,1, then we may choose to
combine the two N -words into a single N -word-argument αi−1αi,1 of E. This again affects the list of
non-↕-arguments of E, but it also affects the connections between the first letter and the last letter of the
(old and new) N -word-arguments (the second feature).

If Ei was preceded in E by an expression-argument, then (the opening bracket of) Ei used to be in
the list of consecutive expression-arguments of E (the fourth feature), and it must be removed from this
list. On the other hand, the list of consecutive expression-arguments of Ei must be inserted into the list
for E. Moreover, if Ei was preceded in E by an expression-argument Ei−1 and the first argument of
Ei itself was an expression-argument Ei,1, then Ei,1 must also be inserted into the list of consecutive
expression-arguments of E. It does not matter where in this list the insertions are carried out.

In the discussion of the last two features, we zoomed in on the effects for the argument preceding Ei

(if any) and the first argument of Ei. Of course, there are similar effects for the last argument of Ei and
the argument succeeding Ei.

We conclude that the simple substitution in line 23 of MakeMinimal has many effects on our data
structure. Nevertheless, these effects (together) can be accomplished in constant time.

The importance of the first two features of the data structure may be more obvious than that of the last
two features. In [15], we give examples of DNA expressions for which MakeMinimal requires quadratic

5The substitution in line M↕M.5 of procedure Make↕ExprMinimal must be considered a composite operation. In the proof of
Lemma 18, we explain how it can be implemented.

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 223

time, if it does not have lists of non-↕-arguments and lists of consecutive expression-arguments. In
particular, in that case, the algorithm may spend quadratic time in the procedures Make↕ExprMinimal
and Denickify. We now establish that with the complete data structure, we do better. Before we reach
this conclusion for MakeMinimal itself, we consider these procedures.

Lemma 18. Let E∗
1 be an arbitrary DNA expression. The total time that the function MakeMinimal

applied to E∗
1 spends in procedure Make↕ExprMinimal is at most linear in |E∗

1 |.

Proof: We first analyse the time spent in a single call of procedure Make↕ExprMinimal, for E =
⟨↕ E1⟩, where E1 is a minimal ↑-expression. If E1 does not have non-↕-arguments, then this call requires
constant time.

From now on, we assume that E1 has at least one non-↕-argument. In this case, we spend most time
in the two for-loops, where we complement the ↓-arguments and the N -word-arguments of Ê1 = E1.
We use the list of non-↕-arguments of (the outermost operator ↑ of) Ê1 to iterate along these arguments.

For each ↓-argument E1,i, we have to determine αE1,i . We do this by traversing E1,i from left to
right, and concatenating the N -words we encounter. If the parent operator of an N -word α is ↓, then,
of course, we determine c(α) (which takes time that is linear in |α|) and concatenate that. We can prove
that at least one third of the N -words we encounter have parent operator ↑ or ↓ in E1,i. In other words,
the total number of N -words we encounter is at most three times the number of N -words with parent
operator ↑ or ↓. This implies that the time required to determine αE1,i (and thus

⟨
↕ αE1,i

⟩
) is at most

linear in the number of N -letters with such parent operator in E1,i.
For each N -word-argument α1,i of Ê1, the time to combine this argument with preceding and suc-

ceeding ↕-arguments is constant. In case Ê1 is not an ↑-expression but a ↓-expression, we also have to
determine c(α1,i) (which takes time that is linear in |α1,i|). In total, the time spent on α1,i is at most lin-
ear in the number of N -letters in α1,i. Obviously, the parent operator of these N -letters is the outermost
operator of Ê1 (either ↑ or ↓).

We can conclude that the total time spent in a single call of Make↕ExprMinimal is at most linear in
the number of N -letters in E1 that have parent operator ↑ or ↓. As a result of this call, these N -letters get
parent operator ↕, and this does not change anymore. Hence, the total time spent in Make↕ExprMinimal
(over all recursive calls of MakeMinimal) is at most linear in the number of N -letters in E∗

1 with parent
operator ↑ or ↓, and thus at most linear in |E∗

1 |. The final conclusion remains valid when we drop the
assumption that the ↑-expression or ↓-expression E1 has at least one non-↕-argument.

Lemma 19. Let E∗
1 be an arbitrary DNA expression. The total time that the function MakeMinimal

applied to E∗
1 spends in procedure Denickify is at most linear in the number of N -words occurring in

E∗
1 , and thus in |E∗

1 |.

Proof: We first analyse the time spent in a single call of procedure Denickify, for a minimal ↓-
expression Ei which is not alternating.

We spend most time in the while-loop. We use the list of the consecutive expression-arguments of
Êi = Ei, to select ε̂j and ε̂j+1. Consequently, a complete iteration of the loop requires constant time. As
a result of the substitution in an iteration, two N -words which were separate, form one N -word. Hence,
the number of (maximal) N -words in Êi decreases by 1.

Then the time spent in Denickify for Ei is linear in the number of iterations of the while-loop for
Ei, which is in turn equal to the decrease of the number of (maximal) N -words in Ei. This carries over

224 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

to the time spent in Denickify over all recursive calls of MakeMinimal for E∗
1 : this time is linear in the

decrease of the number of (maximal) N -words due to Denickify. As we never split N -words in the
course of MakeMinimal, this is at most the number of N -words occurring in E∗

1 minus 1.

Theorem 20. For each DNA expression E∗
1 , both the time and the space required by the function

MakeMinimal are linear in |E∗
1 |.

Proof: Let E∗
1 be an arbitrary DNA expression.

We first observe that when we call MakeMinimal recursively for an expression-argument Ei of the
current DNA expression E, we do not have to explicitly copy Ei, in order to pass it as a parameter to the
recursive call. It is sufficient to make a ‘call by reference.’ For example, we may simply pass the position
of the opening bracket of Ei, because it completely determines the expression-argument in E. The same
holds for calls of the three procedures used by MakeMinimal. Hence, there is only a constant overhead
(both in space and in time) due to a recursive call or a call of a procedure. In terms of complexity, we
can ignore such overhead.

It is not hard to see that the data structure we propose requires space that is linear in |E∗
1 |.

As for the time complexity, we know by Lemma 18 and Lemma 19 that we spend at most time that is
linear in |E∗

1 | in procedures Make↕ExprMinimal and Denickify. We now analyse the total time spent
(over all recursive calls of the function) in the other parts of MakeMinimal. Let us use TMM(E) to denote
this time for a DNA expression E.

It is not hard to verify that every instruction in the function, other than the recursive calls and the
calls of procedures Make↕ExprMinimal and Denickify, can be done in constant time. We can therefore
define three constants for the time spent in specific parts of MakeMinimal:

c1 is the maximum time required for an ↕-expression E, except the time spent in recursive calls and
procedure Make↕ExprMinimal;

c2 is the maximum time required for an ↑-expression or ↓-expression E, except the time spent for each
of its n arguments ε1, . . . , εn;

c3 is the maximum time spent on an argument εi of an ↑-expression or ↓-expression E, except the time
spent in recursive calls and procedure Denickify.

Now, let the constant c∗ be defined by

c∗ = max

{
c1
3
,
c2 + c3

3
, c3

}
.

We can prove by induction on the number of operators occurring in E, that TMM(E) ≤ c∗ · |E| − c3.
Here, we subtract c3, to be prepared for the additional constant time required for every argument of an
↑-expression or ↓-expression E.

As mentioned before, if the original DNA expression E∗
1 is minimal already, then the function

MakeMinimal leaves it unchanged. When we apply MakeMinimal to different equivalent, minimal
DNA expressions, the outputs (which equal the inputs) are also different. This implies in particular that
MakeMinimal does not necessarily yield the same output for different equivalent inputs. In other words,
the output of MakeMinimal cannot be considered as (some kind of) a normal form.

R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal 225

6. Conclusions

We have described a recursive algorithm, which rewrites a given DNA expression into an equivalent, min-
imal DNA expression. This is useful, e.g., to save space for storing a description of the DNA molecule
denoted. In the algorithm, step by step, the DNA expression acquires the six properties that characterize
minimal DNA expressions. The algorithm is elegant, because it does not refer to the semantics of the
DNA expression involved. It consists of string manipulations on the DNA expression itself. The algo-
rithm requires linear time and space. In [16], we use the algorithm as the first step of a larger algorithm,
for rewriting arbitrary DNA expressions into some normal form.

Acknowledgement

The authors thank Grzegorz Rozenberg for useful comments on the manuscript.

References

[1] L.M. Adleman: Molecular computation of solutions to combinatorial problems, Science 266, 1994, 1021–
1024.

[2] D. Boneh, C. Dunworth, R.J. Lipton: Breaking DES using a molecular computer, DNA Based Computers
– Proceedings of a DIMACS Workshop, April 4, 1995, Princeton University (R.J. Lipton, E.B. Baum, Eds.),
American Mathematical Society, Providence, RI, 1996, 37–66.

[3] L. Cardelli, W. Shih (Eds.): DNA Computing and Molecular Programming – 17th International Conference,
DNA 17, Pasadena, CA, USA, September 19–23, 2011 – Proceedings, LNCS 6937, Springer, Berlin, 2011.

[4] J. Chen, N. Jonoska, G. Rozenberg (Eds.): Nanotechnology: Science and Computation, Natural Computing
Series, Springer, Berlin, 2006.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest: Introduction to Algorithms, The MIT Press, Cambridge and
McGraw-Hill, New York, 1990.

[6] A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in Living Cells – Gene Assembly
in Ciliates, Natural Computing Series, Springer, Berlin, 2004.

[7] H. Gu, J. Chao, S.-J. Xiao, N.C. Seeman: A proximity-based programmable DNA nanoscale assembly line,
Nature 465, 2010, 202–205.

[8] T. Head: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant
behaviors, Bulletin of Mathematical Biology 49(6), 1987, 737–759.

[9] L. Kari, S. Konstantinidis, P. Sosı́k: On properties of bond-free DNA languages, Theoretical Computer Science
334, 2005, 131–159.

[10] Z. Li: Algebraic properties of DNA operations, Proceedings of the Fourth International Meeting on DNA
Based Computers, University of Pennsylvania, Philadelphia, USA, June 15–19, 1998, BioSystems 52 (L. Kari,
H. Rubin, D.H. Wood, Eds.), 1999, 55–61.

[11] Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing – New Computing Paradigms, Springer, Berlin, 1998.

[12] P.W.K. Rothemund: Folding DNA to create nanoscale shapes and patterns, Nature 440, 2006, 297–302.

226 R. van Vliet and H.J. Hoogeboom / Making DNA Expressions Minimal

[13] Y. Sakakibara, Y. Mi (Eds.): DNA Computing and Molecular Programming – 16th International Conference,
DNA 16, Hong Kong, China, June 14–17, 2010 – Revised Selected Papers, LNCS 6518, Springer, Berlin, 2011.

[14] R. van Vliet: Combinatorial Aspects of Minimal DNA Expressions (ext.), Technical Report 2004-03, Leiden
Institute of Advanced Computer Science, Leiden University, March 2004, see
www.liacs.nl/home/rvvliet/dnaexpressions/

[15] R. van Vliet: All about a Minimal Normal Form for DNA Expressions, Technical Report 2011-03, Leiden
Institute of Advanced Computer Science, Leiden University, July 2011,
see www.liacs.nl/home/rvvliet/dnaexpressions/

[16] R. van Vliet, H.J. Hoogeboom: A minimal normal form for DNA expressions, Fundamenta Informaticae,
123(2), 2013, 227–243.

[17] R. van Vliet, H.J. Hoogeboom, G. Rozenberg: Combinatorial aspects of minimal DNA expressions, DNA
Computing – 10th International Workshop on DNA Computing, DNA10, Milan, Italy, June 7–10, 2004 – Revised
Selected Papers (C. Ferretti, G. Mauri, C. Zandron, Eds.), LNCS 3384, Springer, Berlin, 2005, 375–388.

[18] R. van Vliet, H.J. Hoogeboom, G. Rozenberg: The construction of minimal DNA expressions, Natural Com-
puting 5, 2006, 127–149.

[19] E. Winfree: DNA computing by self-assembly, The Bridge 33(4), 2003, 31–38.

