
Combinatorial Aspects of Minimal DNA
Expressions

Rudy van Vliet, Hendrik Jan Hoogeboom, and Grzegorz Rozenberg

Leiden Institute of Advanced Computer Science (LIACS),
Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
{rvvliet, hoogeboo, rozenber}@liacs.nl

Abstract. We describe a formal language/notation for DNA molecules
that may contain nicks and gaps. The elements of the language, DNA
expressions, denote formal DNA molecules. Different DNA expressions
may denote the same formal DNA molecule. We analyse the shortest
DNA expressions denoting a given formal DNA molecule: what is their
length, how are they constructed, how many of them are there, and how
can they be characterized.

1 Introduction

Since the discovery of the structure and function of DNA molecules, DNA has
become an ‘intense’ research topic among biologists and biochemists. Formal
study of computational properties of DNA really began when Head [1987] de-
fined formal languages consisting of strings that can be modified by operations
based on the way that restriction enzymes process DNA molecules. Theoretical
computer scientists explored the generative power and other properties of such
languages, see, e.g., [Kari et al., 1996] and [Head et al., 1997]. The interest of
the computer science community in the computational potential of DNA was
boosted, when Adleman [1994] described a solution of an instance of the di-
rected Hamiltonian path problem using DNA, enzymes and standard biomolec-
ular operations. Since then, research on DNA computing is really flourishing,
see, e.g., [Hagiya & Ohuchi, 2003], [Chen & Reif, 2004] and [Păun et al., 1998].
Recent developments include research on computations in living cells, see, e.g.,
[Landweber & Kari, 1999], [Daley et al., 2004] and [Ehrenfeucht et al., 2004].

Neither in the theoretical, nor in the applied publications, much atten-
tion is paid to the notation used to denote DNA molecules – exceptions are
[Boneh et al., 1996] and [Li, 1999]. In most cases, one simply uses the stan-
dard double-string notation (like ACATG

TGTAC
) to describe a double-stranded DNA

molecule.
In this paper, we describe a concise and precise notation for DNA molecules,

based on the letters A, C, G and T and three operators ↑, ↓ and � (to be

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 375–388, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

376 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

pronounced as uparrow , downarrow and updownarrow , respectively). The re-
sulting DNA expressions denote formal DNA molecules – a formalization of
DNA molecules. We do not only account for perfect double-stranded DNA
molecules, but also for single-stranded DNA molecules and for double-stranded
DNA molecules containing nicks (missing phosphodiester bonds between adja-
cent nucleotides in the same strand) and gaps (missing nucleotides in one of
the strands). The notation is the first step towards a formal description of more
complex DNA molecules. The ultimate goal is to also describe the secondary
structure of DNA.

Our three operators bear some resemblance to the operators used in
[Boneh et al., 1996] and [Li, 1999], but their functionality is quite different. The
operator ↑ acts as a kind of ligase for the upper strands: it creates upper strands
and connects the upper strands of its arguments. The operator ↓ is the analogue
for lower strands. Finally, � fills up the gap(s) in its argument. The effects of
the operators do not perfectly correspond to the effects of existing techniques in
real-life DNA synthesis. Yet, the operators are useful to describe certain types
of DNA molecules.

In our formal language, different DNA expressions may denote the same
formal DNA molecule. We examine which DNA expressions are minimal, i.e.,
have the shortest length among DNA expressions denoting the same formal DNA
molecule, and what their length is. Moreover, there may be different minimal
DNA expressions denoting the same formal DNA molecule. We calculate the
number of these minimal DNA expressions. Finally, we give a characterization
of minimal DNA expressions, which makes it easy to check whether or not a
given DNA expression is minimal.

Due to space limitations, we omit the formal proofs of the results we present in
this paper. For some results, however, we will provide an intuitive argumentation.
The proofs can be found in [Van Vliet, 2004].

2 N -Words and Formal DNA Molecules

The letters A, C, G and T, denoting the four nucleotides that a DNA molecule
consists of, are also important building blocks of our language. We use N to
denote this alphabet: N = {A, C, G, T}. The elements of N are called N -
letters. A non-empty string over N is called an N -word.

For an N -word α, c(α) is the element-wise (non-reversed) Watson-Crick com-
plement of α. For example, c(ACATG) = TGTAC.

The semantical basis of our formal language are formal DNA molecules.
Formal DNA molecules are strings over the set A�� = A+ ∪A− ∪A± ∪ {�

, �},
where A+ =

{(
A
−

)
,
(

C
−

)
,
(
G
−

)
,
(

T
−

)}
, A− =

{(−
A

)
,
(−

C

)
,
(−
G

)
,
(−

T

)}
and A± ={(

A
T

)
,
(

C
G

)
,
(
G
C

)
,
(
T
A

)}
. The elements of A+∪A−∪A± are called A-letters. The

elements of A+ and A− correspond to gaps in the lower strand and the upper
strand, respectively. The symbols � and � are called nick letters. The upper nick

Combinatorial Aspects of Minimal DNA Expressions 377

letter � represents a nick in the upper strand of the DNA molecule; the lower
nick letter � represents a nick in the lower strand.

Not all strings over A�� are formal DNA molecules. We impose three natu-
ral conditions on the strings, which, among others, prevent the DNA molecule
represented from ‘falling apart’.

Definition 1. A formal DNA molecule is a string X = x1x2 . . . xr with r ≥ 1
and for i = 1, . . . , r, xi ∈ A��, satisfying

• if xi ∈ A+, then xi+1 /∈ A− (i = 1, 2, . . . , r − 1),
if xi ∈ A−, then xi+1 /∈ A+ (i = 1, 2, . . . , r − 1),

• x1, xr /∈ {�
, �},

• if xi ∈ {�
, �}, then xi−1, xi+1 ∈ A± (i = 2, 3, . . . , r − 1).

A formal DNA molecule that does not contain nick letters, is called nick free.
Examples of formal DNA molecules are

X1 =
(
A
T

)(
C
G

)(
A
T

)(
T
A

)(
G
C

)
, (1)

X2 =
(
A
T

)
�
(

C
G

)(
A
T

)
�

(
T
A

)(
G
−

)
, and (2)

X3 =
(−

T

)(
C
G

)(
A
−

)(
T
−

)(
G
C

)
. (3)

Both X1 and X3 are nick free. We assume that if two nucleotides in the same
strand are separated by a gap (as is the case for the G and the C in the lower
strand of X3), then they are not connected by a (long) phosphodiester bond.

The following strings over A�� are no formal DNA molecules, because they
violate one of the three conditions from Definition 1.

X ′
1 =

(−
T

)(−
G

)(
A
−

)(
T
A

)(
G
C

)
,

X ′
2 = �

(
A
T

)(
C
G

)(
A
T

)(
T
A

)(
G
−

)
, and

X ′
3 =

(−
T

)
�
(

C
G

)(
A
−

)
�
(

T
−

)(
G
C

)
.

Often, we simplify the notation of a formal DNA molecule. Let X = x1 . . . xr

for some r ≥ 1 be a formal DNA molecule. If two or more consecutive symbols
of X are elements of A+, say xi . . . xj =

(
ai

−
)

. . .
(
aj

−
)

with 1 ≤ i < j ≤ r,

then we may substitute xi . . . xj by
(
ai . . . aj

−
)
. Analogously, we may substitute

consecutive elements of A− and consecutive elements of A±. When we simplify
the notation of a formal DNA molecule, we do not modify the formal DNA
molecule itself. In particular, it remains a string over A��.

A non-empty sequence of elements of A+ is called an upper A-word . Anal-
ogously, we have a lower A-word (with elements of A−) and a double A-word
(with elements of A±). These notions are needed to define the decomposition of
a formal DNA molecule:

378 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

Definition 2. Let X be a formal DNA molecule. The decomposition of X is the
sequence x′

1, . . . , x
′
k of k ≥ 1 non-empty strings over A�� such that

• X = x′
1 . . . x′

k,
• for i = 1, . . . , k, x′

i is either an upper A-word, or a lower A-word, or a double
A-word, or a nick letter, and

• for i = 1, . . . , k − 1, if x′
i is an upper A-word, then x′

i+1 is not an upper
A-word, and analogously for lower A-words and double A-words.

Hence, the decomposition of X cannot be simplified any further. For the ease of
notation, we will in general write x′

1 . . . x′
k instead of x′

1, . . . , x
′
k.

For example, the decompositions of the formal DNA molecules X1, X2 and
X3 are

X1 =
(
ACATG
TGTAC

)
(with k = 1),

X2 =
(
A
T

)
�
(
CA
GT

)
�

(
T
A

)(
G
−

)
(with k = 6), and

X3 =
(−

T

)(
C
G

)(
AT
−

)(
G
C

)
(with k = 4).

If x′
1 . . . x′

k for some k ≥ 1 is the decomposition of a formal DNA molecule X,
then the substrings x′

i are called the components of X. For i = 1, . . . , k, if x′
i is

an upper A-word (lower A-word or double A-word), then it is called an upper
component (lower component or double component , respectively) of X. If x′

i is
either an upper component or a lower component, then we may also call it a
single-stranded component of X.

Because, by definition, an upper component of a formal DNA molecule X
cannot be followed by a lower component and vice versa, and nick letters occur-
ring in X must be preceded and followed by a double component, we have

Lemma 3. For each formal DNA molecule X, the decomposition of X is an
alternating sequence of double components on the one hand and other types of
components on the other hand.

For example, the decomposition of X2 consists of a double component, an upper
nick letter, a double component, a lower nick letter, a double component and an
upper component, respectively.

We define three functions on formal DNA molecules. Let X = x1 . . . xr for
some r ≥ 1 be a formal DNA molecule. Then L(X) = x1 and R(X) = xr. Hence,
the functions L and R give the leftmost symbol and the rightmost symbol of a
formal DNA molecule. Further, |X|A counts the A-letters occurring in X. For

example, L(X2) =
(
A
T

)
, R(X2) =

(
G
−

)
and |X2|A = 5.

3 DNA Expressions

The elements of our language are called DNA expressions. The semantics of a
DNA expression E is a formal DNA molecule, denoted by S(E). In this paper,

Combinatorial Aspects of Minimal DNA Expressions 379

S
(〈↑ C

G
AT GC

CG

� 〉)
= CATGC

G CG
S

(〈↑ A
T

T
A

〉)
= AT

TA�
(a)

S
(〈↓T CATGC

G CG
AT
TA�

〉)
= CATGCAT

TG CGTA

�
(b)

S
(〈� CATGCAT

TG CGTA

� 〉)
= ACATGCAT

TGTACGTA

�
(c)

Fig. 1. Examples of (a) the effect of the operator ↑; (b) the effect of the operator ↓;
(c) the effect of the operator �

we will describe the syntax and semantics of a DNA expression in words and by
means of examples. For a formal definition, we refer to [Van Vliet, 2004]. One
can also define a context-free grammar that generates the DNA expressions.

DNA expressions are the result of applying the three operators ↑, ↓ and �
to basic N -words. In general, the operator ↑ can have any number n ≥ 1 ar-
guments ε1, . . . , εn, which may be N -words or DNA expressions. The result of
applying ↑ to these arguments is the DNA expression 〈↑ ε1 . . . εn〉. It is called an
↑-expression. Analogously, we may have a ↓-expression 〈↓ ε1 . . . εn〉. The opera-
tor � can have only one argument ε1, which may again be an N -word or a DNA
expression, yielding an �-expression 〈� ε1〉.

Hence, the set of all DNA expressions is a language over the alphabet N ∪{↑,
↓, �, 〈 , 〉}. The length of a specific DNA expression E is defined as the number of
its symbols and is denoted by |E|. The outermost operator of a DNA expression
is (the occurrence of) the operator which has been performed last. For example,
the outermost operator of an ↑-expression is ↑. All other occurrences of operators
in a DNA expression, i.e., the occurrences in the argument(s) of the outermost
operator, are called inner occurrences.

The effect of ↑ is the following: (1) for each argument that is an N -word α, it

produces an upper A-word
(

α
−

)
, (2) it removes all upper nick letters occurring in

its arguments, and (3) it connects the upper strands of consecutive arguments.
Step (3) requires that for i = 1, . . . , n − 1, the upper strand of the formal

DNA molecule Xi corresponding to argument εi extends at least as far to the
right as the lower strand: R(Xi) must not be an element of A−. Analogously, if
Xi+1 is the formal DNA molecule corresponding to argument εi+1, then L(Xi+1)
must not be an element of A−. Otherwise, there would be a gap in the upper
strand ‘between’ Xi and Xi+1, and we would not be able to connect the upper
strands. Such natural requirements are tedious to formalize, which is why we
omit a full formal definition of DNA expressions.

Lower nick letters that occur in the arguments of ↑ are not removed. On the
contrary, if both R(Xi) and L(Xi+1) are elements of A±, then ↑ produces a
lower nick letter between Xi and Xi+1. Thus, the lower strands of consecutive
arguments are not connected.

The simplest ↑-expression is of the form 〈↑ α1〉 for an N -word α1. Its seman-

tics is the formal DNA molecule
(
α1

−
)
. Figure 1(a) shows the effect of ↑ for two

less trivial examples. For the ease of understanding, we replaced the arguments

380 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

of ↑ that are DNA expressions by pictorial representations of the corresponding
DNA molecules. The result of the operator is depicted in the same way. For ex-
ample, the first ↑-expression has three arguments: a DNA expression, an N -word
and another DNA expression, respectively.

On the other hand, although the DNA molecules corresponding to ACAT
TGT

and G
AC

have matching sticky ends,
〈
↑ ACAT

TGT
G

AC

〉
is not a DNA expres-

sion, because L(
(−
A

)(
G
C

)
) ∈ A−. Hence, the operator ↑ does not account for

annealing. Analogously,
〈
↑ AC

TGT
G

AC

〉
is not a DNA expression.

The effect of the operator ↓ is analogous to that of ↑. However, instead of
upper A-words, upper nick letters and upper strands, we must read lower A-
words, lower nick letters and lower strands, respectively. For step (3), we also
have analogous requirements. The effect of ↓ is illustrated in Fig. 1(b).

Finally, the operator � complements its argument: it provides a complemen-
tary nucleotide for every nucleotide that is not yet complemented. Each nu-
cleotide added is connected to its direct neighbours. The operator does not intro-
duce or remove nick letters. The argument of � may be any N -word or any DNA
expression. If the argument is an N -word α1, then it is interpreted as 〈↑ α1〉.
Hence, S(〈� α1〉) =

(
α1

c(α1)

)
.

Figure 1(c) illustrates the effect of �. A complete DNA expression denoting
the formal DNA molecule from this example is

E = 〈� 〈↓ T 〈↑ 〈� C〉AT 〈↓ 〈� G〉 〈� C〉〉〉 〈↑ 〈� A〉 〈� T〉〉〉〉 . (4)

It is the result of the step-by-step construction from Fig. 1.
We say that a formal DNA molecule X is expressible, if there exists a DNA

expression E with S(E) = X. Unfortunately, there exist formal DNA molecules
that are not expressible. In fact, we have:

Theorem 4. A formal DNA molecule is expressible, if and only if it does not
both contain upper nick letters and lower nick letters.

Hence, the formal DNA molecules X1 and X3 from (1) and (3) are express-
ible, for example by DNA expressions 〈� ACATG〉 and 〈↓ T 〈↑ 〈� C〉AT 〈� G〉〉〉,
respectively. X2, however, is not expressible.

4 The Length of a DNA Expression

Different DNA expressions may denote the same formal DNA molecule. Such
DNA expressions are called equivalent . In fact, for each expressible formal DNA
molecule X, there exist infinitely many DNA expressions denoting X. For ex-
ample, it is easily verified that if E is an ↑-expression denoting X, then so is
〈↑ E〉. By repeating the construction, adding three symbols (two brackets and
an operator) at a time, we can find arbitrarily long, equivalent DNA expressions.
Hence, there is no maximal length for DNA expressions denoting a given formal

Combinatorial Aspects of Minimal DNA Expressions 381

DNA molecule. There does, however, exist a minimal length. We will examine
this length for all types of expressible formal DNA molecules and we will also
describe the DNA expressions that achieve this length. Before we do so, we make
an elementary observation:

Lemma 5. Let E be a DNA expression denoting a formal DNA molecule X,
and let p be the number of operators occurring in E. Then |E| = 3 · p + |X|A.

Because each occurrence of an operator is accompanied by an opening bracket
and a closing bracket, the term 3 · p accounts for the operators and the brackets
in E. Consequently, |X|A counts the N -letters occurring in E. Note that this
number only depends on X, and not on the specific DNA expression E.

Indeed, for the DNA expression E from (4), the number p of operators is 10,
the number of A-letters in X is 8 and |E| = 3 · 10 + 8 = 38.

5 Lower Bounds for the Length of a DNA Expression

We first examine lower bounds for the length of a DNA expression E denoting a
formal DNA molecule X. These lower bounds will be expressed in terms of some
simple counting functions of X. We now introduce these counting functions.

It follows from the definition of a DNA expression that both upper com-
ponents and lower nick letters are the result of an occurrence of the operator
↑. Therefore, these type of components are called ↑-components . Analogously,
lower components and upper nick letters are called ↓-components .

Recall that the decomposition of a formal DNA molecule is an alternating se-
quence of double components on the one hand and other types of components on
the other hand. If we disregard the double components, then we only have a se-
quence of other types of components, which are ↑-components and ↓-components.
Consecutive ↑-components form a (maximal) series of ↑-components. Analo-
gously, we have maximal series of ↓-components.

Definition 6. Let X be a formal DNA molecule.

• T↑(X) is the number of maximal series of ↑-components of X.
• T↓(X) is the number of maximal series of ↓-components of X.
• n�(X) is the number of double components of X.

We illustrate this definition by the formal DNA molecule X depicted in Fig. 2.
The αi’s occurring in this picture denote the N -words determining the upper,
lower and double components of X. The ↑-components of X are

(
α4

−
)

(series

1),
(
α8

−
)

and
(
α10

−
)

(series 2), and
(
α13

−
)

(series 3). The ↓-components of X are

the first and the second upper nick letter (series 1),
(−
α6

)
(series 2), the third

upper nick letter (series 3) and the fourth upper nick letter and
(−
α16

)
(series

4). Hence, T↑(X) = 3 and T↓(X) = 4. Further, n�(X) = 10.
Intuitively, T↑(X) counts the transitions (from ↓-components) to ↑-compo-

nents. It requires an occurrence of the operator ↑ to achieve this transition.

382 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

� � � �α1 α2 α3 α4 α5

α6

α7 α8 α9 α10 α11 α12 α13 α14 α15

α16

Fig. 2. Pictorial representation of a formal DNA molecule containing upper nick letters

There is, of course, an analogous interpretation of T↓(X). Note that, unless a
formal DNA molecule X only consists of a double component, hence, unless
X =

(
α1

c(α1)

)
for an N -word α1, either T↑(X) > 0, or T↓(X) > 0 (or both).

Because maximal series of ↑-components and maximal series of ↓-components
alternate in a formal DNA molecule, we have

Lemma 7. For each formal DNA molecule X, T↑(X)−1 ≤ T↓(X) ≤ T↑(X)+1.

We can now formulate lower bounds on the lengths of DNA expressions:

Theorem 8. Let E be a DNA expression, and let X = S(E).

1. If E is an ↑-expression, then |E| ≥ 3 + 3 · T↓(X) + 3 · n�(X) + |X|A.
2. If E is a ↓-expression, then |E| ≥ 3 + 3 · T↑(X) + 3 · n�(X) + |X|A.
3. If E = 〈� α1〉 for an N -word α1, then |E| = 3 · n�(X) + |X|A.
4. If E = 〈� E1〉 for a DNA expression E1, then |E| ≥ 3 + 3 · n�(X) + |X|A.

The terms 3+3·T↓(X) and 3+3·T↑(X) occurring in the first two lower bounds
correspond to occurrences of the two operators ↑ and ↓. The term 3 · n�(X)
occurring in all lower bounds corresponds to occurrences of the operator �, which
are needed to obtain the double components of X. For example, an ↑-expression
denoting a formal DNA molecule X contains at least (1+T↓(X)) occurrences of
↑ and ↓ together, and at least n�(X) occurrences of �.

The symmetry between Claims 1 and 2 is due to the symmetrical effects of
the operators ↑ and ↓. In later results, we will refer to this symmetry rather than
fully stating a symmetrical claim.

6 Minimal DNA Expressions for a Nick Free Molecule

We are not just interested in lower bounds on the lengths of DNA expressions;
we also want to be able to construct the shortest DNA expressions denoting a
given formal DNA molecule. A DNA expression E is called minimal , if for every
equivalent DNA expression E′, |E′| ≥ |E|.

We first consider nick free formal DNA molecules. These consist only of upper
components, lower components and double components. By Theorem 4, each nick
free formal DNA molecule is expressible.

Theorem 9. Let X be a nick free formal DNA molecule.

1. If X =
(

α1

c(α1)

)
for an N -word α1, then the only minimal DNA expression

denoting X is E = 〈� α1〉, with length |E| = 3 + |X|A.
2. If T↑(X) = T↓(X) ≥ 1, then each minimal DNA expression E denoting X

is either an ↑-expression or a ↓-expression and has length

Combinatorial Aspects of Minimal DNA Expressions 383

α1 α2

α3

α4

α5

α6 α7 α8

α9

α10 α11 α12 α13 α14

α15

α16 α17 α18

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

Fig. 3. Pictorial representation of a nick free formal DNA molecule X with single-

stranded components. The lower components have been partitioned in submolecules

X1 and X2 (see the construction below Theorem 9)

|E| = 3 + 3 · T↓(X) + 3 · n�(X) + |X|A
= 3 + 3 · T↑(X) + 3 · n�(X) + |X|A.

3. If T↑(X) > T↓(X), then each minimal DNA expression E denoting X is an
↑-expression and has length

|E| = 3 + 3 · T↓(X) + 3 · n�(X) + |X|A.

4. If T↓(X) > T↑(X), then . . . (symmetric to Claim 3).

For nick free formal DNA molecules with at least one single-stranded com-
ponent, we did not mention how to construct the minimal DNA expressions. We
will describe this construction now, in an intuitive way, by means of an example.

Consider the nick free formal DNA molecule X depicted in Fig. 3, for which
T↑(X) = 4, T↓(X) = 3 and n�(X) = 9. Because T↑(X) > T↓(X), a minimal DNA

expression denoting X must be an ↑-expression. Upper components
(
αi

−
)

result

when ↑ has arguments that are N -words αi, and double components
(

αi

c(αi)

)

of X can be produced efficiently by arguments of the form 〈� αi〉. The lower
components of X, however, require a special treatment. We partition the lower
components of X in submolecules X1,X2, . . . , Xr for some r ≥ 1, which, if possi-
ble, start with a double component preceding a maximal series of ↓-components
and end with a double component succeeding a maximal series of ↓-components.
If the first component of X is a ↓-component, then X1 starts with this compo-
nent. Analogously, Xr may end with a ↓-component.

For our nick free formal DNA molecule X, we may take r = 2 and

X1 =
(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)(−
α5

)(
α6

c(α6)

)(
α7

−
)(

α8

c(α8)

)(−
α9

)(
α10

c(α10)

)
,

X2 =
(

α14

c(α14)

)(−
α15

)(
α16

c(α16)

)

(see also Fig. 3). We now recursively determine minimal DNA expressions E1 and
E2 denoting X1 and X2, respectively. These minimal DNA expressions become
arguments of the ↑-expression E we are constructing, together with N -words αi

and �-expressions 〈� αi〉 for the upper components and double components of X
which are neither in X1, nor in X2:

E = 〈↑ α1E1α11 〈� α12〉α13E2α17 〈� α18〉〉 .

384 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

Because T↑(X1) = 1 < 2 = T↓(X1), E1 must be a ↓-expression, which is con-
structed in an analogous way: the only upper component of X1 is ‘partitioned’
in the submolecule X1,1 =

(
α6

c(α6)

)(
α7

−
)(

α8

c(α8)

)
. We determine a minimal DNA

expression E1,1 for X1,1, which is, in turn, an ↑-expression:

E1,1 = 〈↑ 〈� α6〉α7 〈� α8〉〉 .

We then get

E1 = 〈↓ 〈� α2〉α3 〈� α4〉α5 〈↑ 〈� α6〉α7 〈� α8〉〉α9 〈� α10〉〉 .

The minimal DNA expression E2 is relatively easy to construct:

E2 = 〈↓ 〈� α14〉α15 〈� α16〉〉 .

Consequently,
E = 〈↑ α1 〈↓ 〈� α2〉α3 〈� α4〉α5 〈↑ 〈� α6〉α7 〈� α8〉〉α9 〈� α10〉〉

α11 〈� α12〉α13 〈↓ 〈� α14〉α15 〈� α16〉〉 α17 〈� α18〉 〉 .
(5)

Indeed,
|E| = 39 + |X|A = 3 + 3 · T↓(X) + 3 · n�(X) + |X|A.

All minimal DNA expressions denoting X are constructed in this way. The result
only depends on the way that lower components (for a minimal ↑-expression) or
upper components (for a minimal ↓-expression) are partitioned in submolecules
X1, . . . , Xr. The construction (of one minimal DNA expression) takes a time
linear in the length of X.

The construction of a minimal ↑-expression for a formal DNA molecule X
with T↑(X) = T↓(X) ≥ 1 (see Theorem 9(2)) proceeds along the same lines.

7 Minimal DNA Expressions for a Molecule with Nicks

To construct minimal DNA expressions for an expressible formal DNA molecule
X containing nick letters, we first decompose X into nick free pieces and nick
letters. We call the result the nick free decomposition of X.

Consider, for example, the formal DNA molecule X depicted in Fig. 4. This
molecule contains three lower nick letters and no upper nick letters. The nick
free decomposition of X is Z1�Z2�Z3�Z4, where

Z1 =
(
α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)
,

Z2 =
(

α5

c(α5)

)(−
α6

)(
α7

c(α7)

)(
α8

−
)(

α9

c(α9)

)(−
α10

)(
α11

c(α11)

)
,

Z3 =
(

α12

c(α12)

)(
α13

−
)(

α14

c(α14)

)(
α15

−
)(

α16

c(α16)

)
,

Z4 =
(

α17

c(α17)

)
.

A DNA expression E is called operator-minimal , if for every equivalent DNA ex-
pression E′ with the same outermost operator, |E′| ≥ |E|. For example, consider
the formal DNA molecule Z2, for which T↑(Z2) = 1, T↓(Z2) = 2 and n�(Z2) = 4.
The ↑-expression

Combinatorial Aspects of Minimal DNA Expressions 385

α1 α2

α3

α4 α5

α6

α7 α8 α9

α10

α11 α12 α13 α14 α15 α16 α17

� � �

Z1︷ ︸︸ ︷ Z2︷ ︸︸ ︷ Z3︷ ︸︸ ︷ Z4︷︸︸︷

Fig. 4. Pictorial representation of a formal DNA molecule X containing lower nick

letters. The nick free decomposition of X is Z1�Z2�Z3�Z4

E2 = 〈↑ 〈↓ 〈� α5〉α6 〈� α7〉〉α8 〈↓ 〈� α9〉α10 〈� α11〉〉〉 ,

which denotes Z2 and has length

|E2| = 21 + |Z2|A = 3 + 3 · T↓(Z2) + 3 · n�(Z2) + |Z2|A,

is operator-minimal, because by Theorem 8(1), there can be no shorter ↑-expres-
sion denoting Z2.

However, because T↓(Z2) > T↑(Z2), E2 is not minimal. By Theorem 9(4),
each minimal DNA expression E′

2 denoting Z2 is a ↓-expression and has length

|E′
2| = 3 + 3 · T↑(Z2) + 3 · n�(Z2) + |Z2|A = 18 + |Z2|A.

We are in particular interested in operator-minimal ↑-expressions and ↓-expres-
sions denoting nick free formal DNA molecules. These operator-minimal DNA
expressions appear to be constructed in exactly the same way as the minimal
↑-expressions and ↓-expressions for nick free formal DNA molecules, which we
have seen in the previous section. The only difference is that operator-minimal ↑-
expressions and ↓-expressions can be constructed for every nick free formal DNA
molecule, and not just for formal DNA molecules X satisfying certain conditions
on T↑(X) and T↓(X).

We can now describe the minimal DNA expressions denoting expressible for-
mal DNA molecules containing nick letters. We only give the formulation for
molecules with lower nick letters, as the formulation for the case with upper
nick letters is completely analogous. Note that by definition, there do not exist
↓-expressions that denote a formal DNA molecule containing lower nick letters.

Theorem 10. Let X be an expressible formal DNA molecule which contains at
least one lower nick letter �, and let Z1�Z2� . . . �Zm for some m ≥ 2 be the
nick free decomposition of X.

For h = 1, . . . , m, let Eh be an operator-minimal ↑-expression denoting
Zh and let the string Êh be the sequence of the arguments of Eh. Then E =〈
↑ Ê1 . . . Êm

〉
is a minimal DNA expression denoting X and

|E| = 3 + 3 · T↓(X) + 3 · n�(X) + |X|A.

Each minimal DNA expression denoting X is constructed in this way.

We return to the formal DNA molecule X from Fig. 4, for which T↓(X) =
3 and n�(X) = 10. We already established the nick free decomposition
Z1�Z2�Z3�Z4 of X and considered an operator-minimal ↑-expression E2 de-
noting Z2. It is not difficult to also construct operator-minimal ↑-expressions for
Z1, Z3 and Z4:

386 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

E1 = 〈↑ α1 〈↓ 〈� α2〉α3 〈� α4〉〉〉 ,

E3 = 〈↑ 〈� α12〉α13 〈� α14〉α15 〈� α16〉〉 ,

E4 = 〈↑ 〈� α17〉〉 .

The corresponding minimal DNA expression denoting the entire formal DNA
molecule X is

E = 〈↑ α1 〈↓ 〈� α2〉α3 〈� α4〉〉 〈↓ 〈� α5〉α6 〈� α7〉〉α8 〈↓ 〈� α9〉α10 〈� α11〉〉
〈� α12〉α13 〈� α14〉α15 〈� α16〉 〈� α17〉 〉 .

Indeed,
|E| = 42 + |X|A = 3 + 3 · T↓(X) + 3 · n�(X) + |X|A.

Also this construction requires linear time.

8 The Number of Minimal DNA Expressions

In principle, there may be many different minimal DNA expressions which denote
the same formal DNA molecule. This is due to the different partitionings of lower
or upper components that we can choose for the construction of an (operator-)-
minimal ↑-expression or ↓-expression denoting a nick free formal DNA molecule.

Let X be a nick free formal DNA molecule. There appears to be an elegant bi-
jection between (operator-)minimal ↑-expressions E denoting X and sequences
of T↓(X) well-nested pairs of brackets. This sequence is obtained from E by
removing all symbols from E except the brackets corresponding to inner occur-
rences of the operators ↑ and ↓. The result for the minimal ↑-expression from (5)
is 〈〈〉〉 〈〉, which is indeed a sequence of T↓(X) = 3 well-nested pairs of brackets.

The number of such sequences is one of the many combinatorial interpreta-
tions of the well-known Catalan numbers (see [Stanley, 1999]). For p ≥ 0, there

exist Cp = 1
p+1

(
2p
p

)
sequences of p well-nested pairs of brackets.

Now, for an expressible formal DNA molecule X, let nmin(X) be the number
of different minimal DNA expressions denoting X. We have:

Theorem 11. Let X be an expressible formal DNA molecule.

1. If X is 〈� α1〉 for an N -word α1, then nmin(X) = 1.
2. If X is nick free and T↑(X) = T↓(X) = p with p ≥ 1, then nmin(X) = 2 ·Cp.

3. If X is nick free and T↑(X) > T↓(X) = p with p ≥ 0, then nmin(X) = Cp.

4. If X is nick free and T↓(X) > T↑(X) = p with p ≥ 0, then . . . (symmetric to
Claim 3).

5. If X contains at least one lower nick letter, then let Z1�Z2� . . . �Zm for
some m ≥ 2 be the nick free decomposition of X, and let for h = 1, . . . , m,
ph = T↓(Zh). Then nmin(X) = Cp1 × · · · × Cpm

.

6. If X contains at least one upper nick letter, then . . . (symmetric to Claim 5).

Combinatorial Aspects of Minimal DNA Expressions 387

9 Characterization of Minimal DNA Expressions

When we want to decide whether or not a given DNA expression E is minimal,
we can determine its semantics X = S(E), look up the length of a minimal
DNA expression denoting X and compare this to the length |E| of E. There is,
however, also a direct way, based on the following characterization:

Theorem 12. A DNA expression E is minimal, if and only if

• each occurrence of the operator � in E has as its argument an N -word α
(i.e., not a DNA expression),

• and no occurrence of the operator ↑ in E has an argument that is an ↑-
expression, and no occurrence of the operator ↓ in E has an argument that
is a ↓-expression,

• and unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each occurrence of an
operator ↑ or ↓ in E has at least two arguments,

• and for each inner occurrence of an operator ↑ or ↓ in E, the arguments are
N -words and DNA expressions, alternately,

• and for each inner occurrence of an operator ↑ or ↓ in E,
− the first argument is either an N -word or an �-expression,
− and the last argument is either an N -word or an �-expression,

• and if the outermost operator of E is ↑ or ↓, then
− either it has two consecutive arguments which are DNA expressions,
− or its first argument is an N -word or an �-expression,
− or its last argument is an N -word or an �-expression.

For an arbitrary DNA expression E, we can verify these six properties in a
time linear in the length of E.

10 Conclusions and Directions for Future Research

We have introduced DNA expressions as a formal notation for DNA molecules
that may contain nicks and gaps. There exist, however, (formal) DNA molecules
with nicks that cannot be represented. For each expressible formal DNA
molecule, we have described the minimal DNA expression(s) denoting it and we
have determined the number of such minimal DNA expressions. For almost all
types of expressible formal DNA molecules, the number of minimal DNA expres-
sions can be expressed in terms of the Catalan numbers. Finally, we have charac-
terized minimal DNA expressions by six properties which can easily be verified.

Because each expressible formal DNA molecule can be denoted by infinitely
many DNA expressions, one may ask for a normal form: a well-defined set of
properties such that for each expressible formal DNA molecule X, there is a
unique DNA expression denoting X and satisfying those properties. And given
a normal form, one may ask for an algorithm that, for each DNA expression,
determines the equivalent DNA expression in normal form. We already have a
normal form and a corresponding algorithm for nick free formal DNA molecules.

388 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

We also have ideas for another normal form and a corresponding algorithm,
which applies to all expressible formal DNA molecules. A nice feature of this
new normal form is that each DNA expression satisfying it is minimal.

One may also consider a new set of operators to construct DNA expressions.
The result may be that each formal DNA molecule becomes expressible, or that
two formal DNA molecules with complementary sticky ends can anneal. It would
be desirable/interesting to find extensions such that the new DNA expressions
could be used to denote DNA molecules with a variety of other ‘imperfections’,
such as, e.g., hairpin loops and circular strands.

References

L.M. Adleman: Molecular computation of solutions to combinatorial problems, Science
266 (1994), 1021-1024.

D. Boneh, C. Dunworth, R.J. Lipton: Breaking DES using a molecular computer, DNA
based computers – Proceedings of a DIMACS workshop (R.J. Lipton, E.B. Baum,
eds.), American Mathematical Society, Providence, RI (1996), 37-66.

J. Chen, J. Reif (eds.): DNA computing – 9th International workshop on DNA based
computers, LNCS 2943, Springer-Verlag, Berlin (2004).

M. Daley, L. Kari, I. McQuillan: Families of languages defined by ciliate bio-operations,
Theoretical Computer Science 320(1) (2004), 51-69.

A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in living
cells – Gene assembly in ciliates, Springer-Verlag, Berlin (2004).

M. Hagiya, A. Ohuchi (eds.): DNA computing – 8th International workshop on DNA-
based computers, LNCS 2568, Springer-Verlag, Berlin (2003).

T. Head: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors, Bulletin of Mathematical Biology 49(6) (1987),
737-759.

T. Head, Gh. Păun, D. Pixton: Language theory and molecular genetics: generative
mechanisms suggested by DNA recombination, Handbook of formal languages (G.
Rozenberg, A. Salomaa, eds.), Vol. 2, Springer-Verlag, Berlin (1997), 295-360.

L. Kari, Gh. Păun, A. Salomaa: The power of restricted splicing with rules from a
regular language, Journal of Universal Computer Science 2(4) (1996), 224-240.

L.F. Landweber, L. Kari: The evolution of cellular computing: nature’s solution to a
computational problem, Proceedings of the fourth international meeting on DNA
based computers, BioSystems 52 (1999), 3-13.

Z. Li: Algebraic properties of DNA operations, Proceedings of the fourth international
meeting on DNA based computers, BioSystems 52 (1999), 55-61.

Gh. Păun, G. Rozenberg, A. Salomaa: DNA computing – New computing paradigms,
Springer-Verlag, Berlin (1998).

R. P. Stanley: Enumerative combinatorics, Vol. 2, Cambridge University Press, Cam-
bridge (1999).

R. van Vliet: Combinatorial aspects of minimal DNA expressions (ext.), Technical
Report 2004-03, Leiden Institute of Advanced Computer Science, Leiden University
(2004), see www.liacs.nl/home/rvvliet/mindnaexpr.html.

	Introduction
	N-Words and Formal DNA Molecules
	DNA Expressions
	The Length of a DNA Expression
	Lower Bounds for the Length of a DNA Expression
	Minimal DNA Expressions for a Nick Free Molecule
	Minimal DNA Expressions for a Molecule with Nicks
	The Number of Minimal DNA Expressions
	Characterization of Minimal DNA Expressions
	Conclusions and Directions for Future Research
	References

