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8.5. Not Every Language
is Recursively Enumerable

reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

cs. languages LBA cs. grammar

re. languages TM unrestr. grammar
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From Fundamentele Informatica 1:

Definition 8.24.

Countably Infinite and Countable Sets

A set A is countably infinite (the same size as N) if there is a

bijection f : N → A, or a list a0, a1, . . . of elements of A such that

every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.

uncountable: not countable
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Example 8.29. Languages Are Countable Sets

L ⊆ Σ∗ =
∞⋃

i=0

Σi
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A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.
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A slide from lecture 4

Assumptions:

1. Names of the states are irrelevant.

2. Tape alphabet Γ of every Turing machine T is subset

of infinite set S = {a1, a2, a3, . . .}, where a1 = ∆.
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A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:

n(ha) = 1, n(hr) = 2, n(q0) = 3, n(q) ≥ 4 for other q ∈ Q.

Assign numbers to each tape symbol:

n(ai) = i.

Assign numbers to each tape head direction:

n(R) = 1, n(L) = 2, n(S) = 3.
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A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form δ(p, σ) = (q, τ,D)

e(m) = 1n(p)01n(σ)01n(q)01n(τ)01n(D)0

We list the moves of T in some order as m1,m2, . . . ,mk, and we

define

e(T ) = e(m1)0e(m2)0 . . .0e(mk)0

If z = z1z2 . . . zj is a string, where each zi ∈ S,

e(z) = 01n(z1)01n(z2)0 . . .01n(zj)0
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Example 8.30. The Set of Turing Machines Is Countable

Let T (Σ) be set of Turing machines with input alphabet Σ

There is injective function e : T (Σ) → {0,1}∗

(e is encoding function)

Hence (. . . ), set of recursively enumerable languages is countable
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Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}∗ are the same size,

there are uncountably many languages over {0,1}
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Theorem 8.32. Not all languages are recursively enumerable.

In fact, the set of languages over {0,1} that are not recursively

enumerable is uncountable.
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(Not) Recursively enumerable

vs.

(Not) Countable
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A slide from lecture 4:

Theorem 8.4. If L1 and L2 are both recursively enumerable

languages over Σ, then L1 ∪ L2 and L1 ∩ L2 are also recursively

enumerable.

Proof. . .
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Exercise 8.3.

Is the following statement true or false?

If L1, L2, . . . are any recursively enumerable subsets of Σ∗, then

∪∞
i=1Li is recursively enumerable.

Give reasons for your answer.
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9.2. Reductions and the Halting Problem
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A slide from lecture 6:

For general decision problem P ,

an encoding e of instances I as strings e(I) over alphabet Σ

is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding e(I)

2. e is injective

3. string e(I) can be decoded
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A slide from lecture 6:

For general decision problem P and reasonable encoding e,

Y (P ) = {e(I) | I is yes-instance of P}

N(P ) = {e(I) | I is no-instance of P}

E(P ) = Y (P ) ∪N(P )

E(P ) must be recursive
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A slide from lecture 6:

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of

instances of P over the alphabet Σ, we say that P is decidable if

Y (P ) = {e(I) | I is a yes-instance of P} is a recursive language.
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A slide from lecture 6:

Self-Accepting:

Given a TM T , does T accept the string e(T )?

For every decision problem, there is complementary problem P ′,

obtained by changing ‘true’ to ‘false’ in statement.

Non-Self-Accepting:

Given a TM T , does T fail to accept e(T ) ?
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Theorem 9.5. For every decision problem P , P is decidable if

and only if the complementary problem P ′ is decidable.

Proof. . .
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A slide from lecture 6:

Definition 9.6. Reducing One Decision Problem to Another . . .

Suppose P1 and P2 are decision problems. We say P1 is reducible

to P2 (P1 ≤ P2)

• if there is an algorithm

• that finds, for an arbitrary instance I of P1, an instance F (I)

of P2,

• such that

for every I the answers for the two instances are the same,

or I is a yes-instance of P1

if and only if F (I) is a yes-instance of P2.

. . .
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A slide from lecture 6:

Theorem 9.7.

. . .

Suppose P1 and P2 are decision problems, and P1 ≤ P2. If P2 is

decidable, then P1 is decidable.
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A slide from lecture 6:

Two more decision problems:

Accepts: Given a TM T and a string w, is w ∈ L(T ) ?

Halts: Given a TM T and a string w, does T halt on input w ?
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A slide from lecture 6:

Theorem 9.9. The following five decision problems are unde-

cidable.

1. Accepts-Λ: Given a TM T , is Λ ∈ L(T ) ?

Proof.

1. Prove that Accepts ≤ Accepts-Λ . . .
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Reduction from Accepts to Accepts-Λ.

Instance of Accepts is (T1, x) for TM T1 and string x.

Instance of Accepts-Λ is TM T2.

T2 = F (T1, x) =

Write(x) → T1

T2 accepts Λ, if and only if T1 accepts x.
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If we had an algorithm/TM A2 to solve Accepts-Λ,

then we would also have an algorithm/TM A1 to solve Accepts,

as follows:

A1:

Given instance (T1, x) of Accepts,

1. construct T2 = F (T1, x);

2. run A2 on T2.

A1 answers ‘yes’ for (T1, x),

if and only if A2 answers ‘yes’ for T2,

if and only if T2 is yes-instance of Accepts-Λ (T2 accepts Λ),

if and only if (T1, x) is yes-instance of Accepts (T1 accepts x)
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Theorem 9.7.

. . .

Suppose P1 and P2 are decision problems, and P1 ≤ P2. If P2 is

decidable, then P1 is decidable.

Order P1 ≤ P2

Proof. . .
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Informal proof:

Suppose that P1 ≤ P2, and that function F maps instance I1 of
P1 to instance I2 = F (I1) of P2 with same answer yes/no

If we have an algorithm/TM A2 to solve P2,
then we also have an algorithm/TM A1 to solve P1,
as follows:

A1:
Given instance I1 of P1,
1. construct I2 = F (I1);
2. run A2 on I2.

I1 ✲ I2 ✲ yes/no

A1 : F A2

A1 answers ‘yes’ for I1,
if and only if A2 answers ‘yes’ for I2,
if and only I2 = F (I1) is yes-instance of P2,
if and only if I1 is yes-instance of P1
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In context of decidability: decision problem P ≈ language Y (P )

Question

“is instance I of P a yes-instance ?”

is essentially the same as

“does string x represent yes-instance of P ?”,

i.e.,

“is string x ∈ Y (P ) ?”
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A slide from lecture 6:

Theorem 9.9. The following five decision problems are unde-

cidable.

1. Accepts-Λ: Given a TM T , is Λ ∈ L(T ) ?

Proof.

1. Prove that Accepts ≤ Accepts-Λ . . .
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Theorem 9.9. The following five decision problems are unde-

cidable.

2. AcceptsEverything:

Given a TM T with input alphabet Σ, is L(T ) = Σ∗ ?

Proof.

2. Prove that Accepts-Λ ≤ AcceptsEverything . . .
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Theorem 9.9. The following five decision problems are unde-

cidable.

3. Subset: Given two TMs T1 and T2, is L(T1) ⊆ L(T2) ?

Proof.

3. Prove that AcceptsEverything ≤ Subset . . .
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Theorem 9.9. The following five decision problems are unde-

cidable.

4. Equivalent: Given two TMs T1 and T2, is L(T1) = L(T2)

Proof.

4. Prove that Subset ≤ Equivalent . . .
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‘The intersection of two Turing machines’
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Accepts-Λ: Given a TM T , is Λ ∈ L(T ) ?

Theorem 9.9. The following five decision problems are unde-

cidable.

5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T ,

does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that Accepts-Λ ≤ WritesSymbol . . .
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AtLeast10MovesOn-Λ:

Given a TM T , does T make at least ten moves on input Λ ?

WritesNonblank: Given a TM T , does T ever write a nonblank

symbol on input Λ ?
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Theorem 9.10.

The decision problem WritesNonblank is decidable.

Proof. . .
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Definition 9.11. A Language Property of TMs

A property R of Turing machines is called a language property if,

for every Turing machine T having property R, and every other

TM T1 with L(T1) = L(T ), T1 also has property R.

A language property of TMs is nontrivial if there is at least one

TM that has the property and at least one that doesn’t.

In fact, a language property is a property of the languages ac-

cepted by TMs.
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Example of nontrivial language property:

2. AcceptsSomething:

Given a TM T , is there at least one string in L(T ) ?
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Theorem 9.12. Rice’s Theorem

If R is a nontrivial language property of TMs, then the decision

problem

PR: Given a TM T , does T have property R ?

is undecidable.

Proof. . .

Prove that Accepts-Λ ≤ PR . . .

(or that Accepts-Λ ≤ Pnot−R . . . )
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Examples of decision problems to which Rice’s theorem can be

applied:

1. Accepts-L: Given a TM T , is L(T ) = L ? (assuming . . . )

2. AcceptsSomething:

Given a TM T , is there at least one string in L(T ) ?

3. AcceptsTwoOrMore:

Given a TM T , does L(T ) have at least two elements ?

4. AcceptsFinite: Given a TM T , is L(T ) finite ?

5. AcceptsRecursive:

Given a TM T , is L(T ) recursive ? (note that . . . )

All these problems are undecidable.
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Rice’s theorem cannot be applied (directly)

• if the decision problem does not involve just one TM

Equivalent: Given two TMs T1 and T2, is L(T1) = L(T2)
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Rice’s theorem cannot be applied (directly)

• if the decision problem does not involve just one TM

Equivalent: Given two TMs T1 and T2, is L(T1) = L(T2)

• if the decision problem involves the operation of the TM

WritesSymbol: Given a TM T and a symbol a in the tape alpha-

bet of T , does T ever write a if it starts with an empty tape ?

WritesNonblank: Given a TM T , does T ever write a nonblank

symbol on input Λ ?

• if the decision problem involves a trivial property

Accepts-NSA: Given a TM T , is L(T ) = NSA ?
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Tentamen

donderdag 31 maart 2022, 09.00-12.00 uur

vragenuur, 29 maart 2022, 13.30-15.30
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