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8.5. Not Every Language
IS Recursively Enumerable
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From Foundations of Computer Science:

Definition 8.24.
Countably Infinite and Countable Sets

A set A is countably infinite (the same size as N) if there is a
bijection f : N — A, or a list ag,a1,... of elements of A such that

every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.

uncountable: not countable



Example 8.29. Languages Are Countable Sets

CXD .
Lcyr=|J =
1=0



A slide from lecture 4
Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string
w € {0,1}*, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with
a given input alphabet 22, or at most one string z.

3. If w=¢e(T) or w = e(z), there should be an algorithm for
decoding w.



A slide from lecture 4
Assumptions:
1. Names of the states are irrelevant.

2. Tape alphabet ' of every Turing machine T' is subset
of infinite set S = {a1,a2,a3,...}, where a1 = A.



A slide from lecture 4
Definition 7.33. An Encoding Function

Assign numbers to each state:
n(he) = 1, n(hy) = 2, n(qp) = 3, n(q) > 4 for other q € Q.

Assign numbers to each tape symbol:

n(a;) = 1.

Assign numbers to each tape head direction:
n(R) =1, n(L) =2, n(S) = 3.



A slide from lecture 4
Definition 7.33. An Encoding Function (continued)

For each move m of T of the form 6(p,0) = (¢, 7, D)
e(m) = 1"P)o17(@)g17(@)g1™(7)01™(P)g

We list the moves of T" in some order as mi1,mo,...,mg, and we
define

e(T) = e(m1)0e(m»-)0...0e(my)0

If 2= 2122...2; is a string, where each z; € S,

e(2) = 01™(x1)g17(22)g . 017(%)Q



Example 8.30. The Set of Turing Machines Is Countable
Let 7(X) be set of Turing machines with input alphabet >
There is injective function e: 7(X) — {0, 1}*

(e is encoding function)

Hence (... ), set of recursively enumerable languages is countable



Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}* are the same size,
there are uncountably many languages over {0,1}
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Theorem 8.32. Not all languages are recursively enumerable.
In fact, the set of languages over {0,1} that are not recursively
enumerable is uncountable.
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(Not) Recursively enumerable
VS.

(Not) Countable
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A slide from lecture 4:

Theorem 8.4. If L1 and L, are both recursively enumerable

languages over >, then L1 U Lo and Ly N Lo are also recursively
enumerable.

Proof...
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EXxercise 8.3.
Is the following statement true or false?

If L1,Lo,... are any recursively enumerable subsets of >*, then
U2 1 L; is recursively enumerable.

Give reasons for your answer.
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9.2. Reductions and the Halting Problem
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A slide from lecture 6:

For general decision problem P,
an encoding e of instances I as strings e(/) over alphabet X
is called reasonable, if

1. there is algorithm to decide if string over X is encoding e([)

2. e is injective
3. string e(I) can be decoded
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A slide from lecture 6:

For general decision problem P and reasonable encoding e,

Y(P) = {e(l)| I is yes-instance of P}
N(P) = {e(l)| I is no-instance of P}
E(P) = (Y(P)UN(P))

E(P) must be recursive
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A slide from lecture 6:
Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of
instances of P over the alphabet >, we say that P is decidable if
Y(P)={e(l)| I is a yes-instance of P} is a recursive language.
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A slide from lecture 6

Theorem 9.4. The decision problem Self-Accepting is undecid-
able.

Proof...
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Definition 9.6. Reducing One Decision Problem to Another . ..

Suppose P; and P» are decision problems. We say P; is reducible
to P, (P1 < P)
e if there is an algorithm
e that finds, for an arbitrary instance I of Py, an instance F(I)
of P>,
e such that

for every I the answers for the two instances are the same,

or I is a yes-instance of P;

if and only if F'(I) is a yes-instance of Ps.
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Theorem 9.7.

Suppose P; and P> are decision problems, and P; < P. If P> is
decidable, then P; is decidable.
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Informal proof:
Suppose that P; < P>, and that function F' maps instance I; of
P; to instance I, = F(I7) of P> with same answer yes/no

If we have an algorithm/TM A, to solve Ps,
then we also have an algorithm/TM A to solve Py,
as follows:

Aq:

Given instance I; of Pq,
1. construct In = F(11);
2. run A, on I».

I I
Aq F Ao

yes/no

Aq answers ‘yes' for Iq,

if and only if A> answers ‘yes’ for I,

if and only I» = F'(I7) is yes-instance of P5,
if and only if I is yes-instance of P4
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Two more decision problems:
Accepts: Given a TM T and a string x, isx € L(T) 7

Halts: Given a TM T and a string x, does T' halt on input = 7

23



Self-Accepting: Given a TM T, does T accept the string e(T")7?

Accepts: Given a TM T and a string z, is x € L(T) 7

Theorem 9.8. Both Accepts and Halts are undecidable.
Proof.

1. Prove that Self-Accepting < Accepts . ..
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Definition 9.6. Reducing One Decision Problem to Another . ..

Suppose P; and P» are decision problems. We say P; is reducible
to P, (P1 < P)
e if there is an algorithm
e that finds, for an arbitrary instance I of Py, an instance F(I)
of P>,
e such that

for every I the answers for the two instances are the same,

or I is a yes-instance of P;

if and only if F'(I) is a yes-instance of Ps.
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Accepts: Given a TM T and a string =, isx € L(T) 7

Halts: Given a TM T and a string z, does T halt on input = 7

Theorem 9.8. Both Accepts and Halts are undecidable.
Proof.
1. Prove that Self-Accepting < Accepts . ..

2. Prove that Accepts < Halts . ..
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Application:
n = 4;
while (n is the sum of two primes)

n = n+2;

This program loops forever, if and only if Goldbach’s conjecture
IS true.
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Theorem 9.7.

Suppose P; and P> are decision problems, and P; < P. If P> is
decidable, then P; is decidable.

Order P1 < P

Proof. ..
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Informal proof:
Suppose that P; < P, and that function F' maps instance I of
P; to instance I, = F(I7) of P> with same answer yes/no

If we have an algorithm/TM A, to solve P5,
then we also have an algorithm/TM A to solve Py,
as follows:

Ali

Given instance I of Py,
1. construct Io = F(1I1);
2. run Ao on I».

I I
Aq F Ao

yes/no

Aq answers ‘yes' for Iq,

if and only if A> answers ‘yes’ for I,

if and only I» = F'(I7) is yes-instance of P5,
if and only if I is yes-instance of P4

29



9.3. More Decision Problems
Involving Turing Machines
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Accepts: Given a TM T and a string z, is x € L(T) 7
Instances are ...

Halts: Given a TM T and a string x, does T' halt on input =z 7
Instances are . ..

Self-Accepting: Given a TM T, does T accept the string e(T)7?
Instances are ...
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Accepts: Given a TM T and a string z, is x € L(T) 7
Instances are . ..

Halts: Given a TM T and a string z, does T halt on input = 7
Instances are . ..

Self-Accepting: Given a TM T, does T accept the string e(71")7?
Instances are ...

Now fix a TM T
T-Accepts: Given a string x, does T' accept = 7
Instances are ...
Decidable or undecidable ? (cf. Exercise 9.7.)
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Exercise 9.7.

As discussed at the beginning of Section 9.3, there is at least
one TM T such that the decision problem

“Given w, does T accept w 7"

IS unsolvable.

Show that every TM accepting a nonrecursive language has this
property.
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A slide from lecture 1
Example 7.7. Accepting

a/a,R

[

L ={a'bal |0 <i<j}

a/a,R

[

5 A/A,Rfi\ b/b,R 2y a/a,R @A/A,L‘
a A/AR
a/a,R A/AR A/A L a/a,L
G‘S\ a/A R_/Q‘\ b/b,R /g a/A,L fQ‘\ b/b,L Q
b/b,R A/AR

A/A,RC@ a/a,S

What ifz ¢ L 7
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Accepts: Given a TM T and a string =, isx € L(T) 7

Theorem 9.9. The following five decision problems are unde-
cidable.

1. Accepts-A\: Givena TM T, is ANe L(T) 7
Proof.

1. Prove that Accepts < Accepts-A . ..
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Reduction from Accepts to Accepts-/.

Instance of Accepts is (1T7,z) for TM T7 and string =.
Instance of Accepts-A is TM T5.

o = F(T1,2z) =
Write(x) — T4

1> accepts A, if and only if T7 accepts .

36



If we had an algorithm/TM A, to solve Accepts-A,

then we would also have an algorithm/TM Aq to solve Accepts,
as follows:

Ali

Given instance (7T7,z) of Accepts,
1. construct Tor = F (T4, x);

2. run A> on T5.

Aq answers ‘yes’ for (11,x),

if and only if A> answers ‘yes’ for 15,

if and only if T5 is yes-instance of Accepts-A\ (15 accepts A),
if and only if (Tq,x) is yes-instance of Accepts (17 accepts x)
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Theorem 9.9. The following five decision problems are unde-
cidable.

1. Accepts-A: Given a TM T, is ANe L(T) 7

Proof.

1. Prove that Accepts < Accepts-A . ..
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Theorem 9.9. The following five decision problems are unde-
cidable.

2. AcceptsEverything:
Given a TM T with input alphabet ¥, is L(T) =X* 7

Proof.

2. Prove that Accepts-N\ < AcceptsEverything . ..
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Theorem 9.9. The following five decision problems are unde-
cidable.

3. Subset: Given two TMs Ty and 15, is L(T7) C L(1») 7

Proof.

3. Prove that AcceptsEverything < Subset . ..
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Theorem 9.9. The following five decision problems are unde-
cidable.

4. Equivalent: Given two TMs Ty and 15, is L(17) = L(15)
Proof.

4. Prove that Subset < Equivalent . ..
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“The intersection of two Turing machines’
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Accepts-\: Givena TM T, is ANe L(T)

Theorem 9.9. The following five decision problems are unde-
cidable.

5. WritesSymbol:
Given a TM T and a symbol a in the tape alphabet of T,
does T ever write a if it starts with an empty tape 7

Proof.

5. Prove that Accepts-N\ < WritesSymbol . ..
43



AtlLeast10MovesOn-/\:
Given a TM T, does T' make at least ten moves on input A 7

WritesNonblank: Given a TM T, does T ever write a nonblank
symbol on input A 7
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Theorem 9.10.
The decision problem WritesNonblank is decidable.

Proof. ..
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Undecidable Decision Problems (we have discussed)
Rice and consequences have not been discussed in 2025!

Self-Accepting

Accepts

Halts Accepts-N\

AcceptsEverything WritesSymbol Pr (Rice)

Subset Accepts-L

AcceptsSomething

Equivalent |
Accepts TwoOrMore

l — reduction AcceptsFinite

l application of result AcceptsRecursive 46




Planning
tentamen, donderdag 27 maart 2025, 09.00-12.00 uur

vragenuur, dinsdag 25 maart 2025, 13.15-15.00 uur?
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