
Computability

voorjaar 2025

https://liacs.leidenuniv.nl/~vlietrvan1/computability/

college 6, 10 maart 2025

8.3. More General Grammars

9. Undecidable Problems

9.1. A Language That Can’t Be Accepted,

and a Problem That Can’t Be Decided

9.2. Reductions and the Halting Problem

1

https://liacs.leidenuniv.nl/~vlietrvan1/computability/

Huiswerkopgave

inleverdatum voor 0.2 punt: 18 maart 2025, 23.59 uur

doel bij nakijken eerste inzendingen: vóór 27 maart

2

A slide from lecture 5

Theorem 8.14.

For every Turing machine T with input alphabet Σ,

there is an unrestricted grammar G

generating the language L(T) ⊆ Σ∗.

Proof.

1. Generate (every possible) input string for T .

2. Simulate computation of T for this input string as derivation

in grammar.

3. If T reaches accept state, reconstruct original input string.

3

A slide from lecture 5

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲ ✲ ✲q0 q1 q2 q3 ha
∆/∆,R a/$,L $/$,R ∆/∆,S

✓✏b/b,R

❄

✓✏b, b,R

❄

Computation for x = ba:

q0∆ba∆ ⊢ ∆q1ba∆ ⊢ ∆bq1a∆ ⊢ ∆q2b$∆ ⊢ ∆bq2$∆ ⊢ ∆b$q3∆ ⊢ ∆b$ha∆

4

A slide from lecture 5

Theorem 8.14.

For every Turing machine T with input alphabet Σ,

there is an unrestricted grammar G

generating the language L(T) ⊆ Σ∗.

Proof.

1. Generate (every possible) input string for T (two copies),

with additional (∆∆)’s and state.

2. Simulate computation of T for this input string as derivation

in grammar (on second copy).

3. If T reaches accept state, reconstruct original input string.

5

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲ ✲ ✲q0 q1 q2 q3 ha
∆/∆,R a/$,L $/$,R ∆/∆,S

✓✏b/b,R

❄

✓✏b, b,R

❄

Computation for x = ba:

q0∆ba∆ ⊢ ∆q1ba∆ ⊢ ∆bq1a∆ ⊢ ∆q2b$∆ ⊢ ∆bq2$∆ ⊢ ∆b$q3∆ ⊢ ∆b$ha∆

6

Theorem 8.14.
For every Turing machine T with input alphabet Σ,
there is an unrestricted grammar G
generating the language L(T) ⊆ Σ∗.

Proof.
1. Generate (every possible) input string for T (two copies),
with additional (∆∆)’s and state.
2. Simulate computation of T for this input string as derivation
in grammar (on second copy).
3. If T reaches accept state, reconstruct original input string.

Ad 2. Move δ(p, a) = (q, b, R) of T
yields production p(σ1a) → (σ1b)q
Move δ(p, a) = (q, b, L) of T
yields production (σ1σ2)p(σ3a) → q(σ1σ2)(σ3b)
Move δ(p, a) = (q, b, S) of T
yields production p(σ1a) → q(σ1b)

7

3. If T reaches accept state, reconstruct original input string. . .

8

Theorem 8.14.

For every Turing machine T with input alphabet Σ,

there is an unrestricted grammar G

generating the language L(T) ⊆ Σ∗.

Proof.

1. Generate (every possible) input string for T (two copies),

with additional (∆∆)’s and state.

2. Simulate computation of T for this input string as derivation

in grammar (on second copy).

3. If T reaches accept state, reconstruct original input string.

Ad 3. Propagate ha all over the string

ha(σ1σ2) → σ1, for σ1 ∈ Σ

ha(∆σ2) → Λ

9

Theorem 8.14.

For every Turing machine T with input alphabet Σ,

there is an unrestricted grammar G

generating the language L(T) ⊆ Σ∗.

Proof.

1. Generate (every possible) input string for T (two copies),

with additional (∆∆)’s and state.

2. Simulate computation of T for this input string as derivation

in grammar (on second copy).

3. If T reaches accept state, reconstruct original input string.

Ad 3. Propagate ha all over the string (too few / many ha’s. . .)

ha(σ1σ2) → σ1, for σ1 ∈ Σ

ha(∆σ2) → Λ

10

8.5. Not Every Language
is Recursively Enumerable

reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

cs. languages LBA cs. grammar

re. languages TM unrestr. grammar

11

9. Undecidable Problems

9.1. A Language
That Can’t Be Accepted,
and a Problem That Can’t Be Decided

12

A slide from lecture 4

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.

13

A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:

n(ha) = 1, n(hr) = 2, n(q0) = 3, n(q) ≥ 4 for other q ∈ Q.

Assign numbers to each tape symbol:

n(ai) = i.

Assign numbers to each tape head direction:

n(R) = 1, n(L) = 2, n(S) = 3.

14

A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form δ(p, σ) = (q, τ,D)

e(m) = 1n(p)01n(σ)01n(q)01n(τ)01n(D)0

We list the moves of T in some order as m1,m2, . . . ,mk, and we

define

e(T) = e(m1)0e(m2)0 . . .0e(mk)0

If z = z1z2 . . . zj is a string, where each zi ∈ S,

e(z) = 01n(z1)01n(z2)0 . . .01n(zj)0

15

e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
.

16

e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
.

NSA 0 0 1 1 0 0 1 0 1 1 .

Hence, NSA is not recursively enumerable.

17

A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

18

Set-up of constructing language NSA that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely e(Ti))

2. Define another language NSA by:

e(Ti) ∈ NSA ⇐⇒ e(Ti) /∈ L(Ti)

3. Conclusion: for all i, NSA 6= L(Ti)

Hence, NSA is not RE

19

Set-up of constructing language NSA that is not RE:

1. Start with collection of RE languages over {0,1}

(which are subsets of {0,1}∗): {L(T) | TM T}

each one associated with specific element of {0,1}∗

(namely e(T))

2. Define another language NSA by:

e(T) ∈ NSA ⇐⇒ e(T) /∈ L(T)

3. Conclusion: for all TM T , NSA 6= L(T)

Hence, NSA is not RE

20

Set-up of constructing language that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

2. Define another language L by:

x ∈ L ⇐⇒ x /∈ (language that x is associated with)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE

21

Set-up of constructing language L that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely xi)

2. Define another language L by:

xi ∈ L ⇐⇒ xi /∈ L(Ti)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE

Every infinite list x0, x1, x2, . . . of different elements of {0,1}∗

yields language L that is not RE

22

Λ 0 1 00 01 10 11 000 001 010 . . .
L(T0) 1 0 1 0 0 1 0 0 0 1 . . .
L(T1) 0 1 1 1 0 0 0 0 1 0 . . .
L(T2) 1 0 0 1 0 0 1 0 0 0 . . .
L(T3) 0 0 0 0 0 0 0 0 0 0 . . .
L(T4) 0 0 0 0 1 0 0 0 0 0 . . .
L(T5) 0 0 1 1 0 1 0 1 0 0 . . .
L(T6) 0 0 0 0 0 0 0 0 1 0 . . .
L(T7) 1 1 1 1 1 1 1 1 1 1 . . .
L(T8) 0 1 0 1 0 1 0 1 0 1 . . .
L(T9) 0 0 0 0 0 0 0 0 0 0 . . .
.

newL 0 0 1 1 0 0 1 0 1 1 . . .

Hence, newL is not recursively enumerable.

23

Definition 9.1. The Languages NSA and SA

Let

NSA = {e(T) | T is a TM, and e(T) /∈ L(T)}

SA = {e(T) | T is a TM, and e(T) ∈ L(T)}

(NSA and SA are for “non-self-accepting” and “self-accepting.”)

24

A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

25

Theorem 9.2. The language NSA is not recursively enumerable.

The language SA is recursively enumerable but not recursive.

Proof. . .

26

Exercise 9.2.

Describe how a universal Turing machine could be used in the

proof that SA is recursively enumerable.

27

Given a TM T , does T accept the string e(T)?

28

Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given . . . , is it true that . . . ?

Given an undirected graph G = (V,E),

does G contain a Hamiltonian path?

Given a list of integers x1, x2, . . . , xn,
is the list sorted?

Self-Accepting: Given a TM T , does T accept the string

e(T)?

instances. . .

29

Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given . . . , is it true that . . . ?

yes-instances of a decision problem:

instances for which the answer is ‘yes’

no-instances of a decision problem:

instances for which the answer is ‘no’

30

Self-Accepting: Given a TM T , does T accept the string e(T)?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. . . .

31

Self-Accepting: Given a TM T , does T accept the string e(T)?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. E′: strings not representing instances

32

For general decision problem P ,

an encoding e of instances I as strings e(I) over alphabet Σ

is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding e(I)

2. e is injective

3. string e(I) can be decoded

33

A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

34

For general decision problem P and reasonable encoding e,

Y (P) = {e(I) | I is yes-instance of P}

N(P) = {e(I) | I is no-instance of P}

E(P)′ = (Y (P) ∪N(P))′

E(P) must be recursive

35

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of

instances of P over the alphabet Σ, we say that P is decidable if

Y (P) = {e(I) | I is a yes-instance of P} is a recursive language.

36

Theorem 9.4. The decision problem Self-Accepting is undecid-

able.

Proof. . .

37

For every decision problem, there is complementary problem P ′,

obtained by changing ‘true’ to ‘false’ in statement.

Non-Self-Accepting:

Given a TM T , does T fail to accept e(T) ?

38

Theorem 9.5. For every decision problem P , P is decidable if

and only if the complementary problem P ′ is decidable.

Proof. . .

39

SA vs. NSA

Self-Accepting vs. Non-Self-Accepting

40

9.2. Reductions and the Halting Problem

41

(Informal) Examples of reductions

1. Recursive algorithms

2. Given NFA M and string x, is x ∈ L(M) ?

3. Given FAs M1 and M2, is L(M1) ⊆ L(M2) ?

42

Theorem 2.15.

Suppose M1 = (Q1,Σ, q1, A1, δ1) and M2 = (Q2,Σ, q2, A2, δ2)
are finite automata accepting L1 and L2, respectively.

Let M be the FA (Q,Σ, q0, A, δ), where

Q = Q1 ×Q2

q0 = (q1, q2)
and the transition function δ is defined by the formula

δ((p, q), σ) = (δ1(p, σ), δ2(q, σ))
for every p ∈ Q1, every q ∈ Q2, and every σ ∈ Σ.

Then

1. If A = {(p, q)| p ∈ A1 or q ∈ A2},
M accepts the language L1 ∪ L2.

2. If A = {(p, q)| p ∈ A1 and q ∈ A2},
M accepts the language L1 ∩ L2.

3. If A = {(p, q)| p ∈ A1 and q /∈ A2},
M accepts the language L1 − L2.

43

(Informal) Examples of reductions

3. SubsetFA: Given FAs M1 and M2, is L(M1) ⊆ L(M2) ?

3’. AcceptsNothingFA: Given FA M , is L(M) = ∅ ?

44

