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7.1 Storage Orgdganization
e Run time storage comes in blocks of contiguous bytes
e Multibyte objects are given the address of first byte

e Alignment / padding
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Typical subdivision of run-time memory into code and data areas



7.1.1 Static Versus Dynamic Storage Al-
location

e Static: compile time
e Dynamic: run time
Dynamic storage allocation:
e Stack storage: for data local to procedure
e Heap storage: for data that outlives procedure

Garbage collection to support heap management



7.2 Stack Allocation of Space

Possible because procedure calls are nested



7.2 Stack Allocation of Space

int a[11];
void readArray() /* Reads 9 integers into alll,...a[9]. */
{ int 1i;

}

int partition (int m, int n)

{ /* Picks a separator value v, and partitions al[m..n] so that
alm..p-1] are less than v, alpl=v, and al[p+l..n} are
equal to or greater than v. Returns p. */

+

void quicksort (int m, int n)

{ int 1i;

if (n > m)

{ i = partition(m, n);
quicksort(m, i-1);
quicksort(i+l, n);

+

+

main ()

{ readArray();

al0] = -9999;

a[10] = 9999;

quicksort(1,9);



Possible Activations

enter main()
enter readArray()
leave readArray()
enter quicksort(1,9)
enter partition(1,9)
leave partition(1,9)
enter quicksort(1,3)

leave quicksort(1,3)
enter quicksort(5,9)

leave quicksort(5,9)
leave quicksort(1,9)
leave main()



7.2.1 Activation Trees

r/////////// \\\7R1,9)
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Activation Trees

m
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Traversal of Activation Tree

1. Sequence of procedure calls ~ .. .traversal

2. Sequence of procedure returns =~ .. .traversal

3. When control lies at particular node (& activation),
the ‘open’ (live) activations are . ..
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Traversal of Activation Tree

1. Sequence of procedure calls ~ preorder traversal

2. Sequence of procedure returns ~ postorder traversal

3. When control lies at particular node (& activation),
the ‘open’ (live) activations are on path from root
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7.2.2. Activation Records

(= stack frames)

Actual parameters

Returned values

Control link

Access link

Saved machine status

Local data

Temporaries

Possible (order of) elements of activation

record
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7.2.3 Calling Sequences
e Code to allocate (and fill) activation record on stack
e Divided between caller (at every location) and callee

e Return sequences analogous
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8 Code Generation

_____________________

source Front |intermediatei Code !intermediate

—>

program End code =§Optimizer§ code

_____________________

e Output code must

— be correct

Code
Generator

target

>

program

— use resources of target machine effectively

e Code generator must run efficiently

Generating optimal code is undecidable problem
Heuristics are available
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8.1 Issues in Design of Code Generator
e Input to the code generator
e [ he target program
e Instruction selection
e Register allocation and assignment

e Evaluation order

16



8.1.1 Input to the Code Generator

e Intermediate representation of source program
— Three-address representations (e.g., quadruples)
— Virtual machine representations (e.g., bytecodes)
— Postfix notation

— Graphical representations (e.g., syntax trees and DAGS)

e Information from symbol table to determine run-time ad-
dresses

e Input is free of errors

— Type checking and conversions have been done

17



8.1.2 The Target Program

e Common target-machine architectures
— RISC: reduced instruction set computer
— CISC: complex instruction set computer

— Stack-based

e Possible output
— Absolute machine code (executable code)
— Relocatable machine code (object files for linker)

— Assembly-language

18



8.1.3 Instruction Selection

e Given IR program can be implemented by many different
code sequences

e Different machine instruction speeds

e Naive approach: statement-by-statement translation, with a
code template for each IR statement

Example: x =y + =z Now, a =b+c d=a-+te
LD RO, y LD RO, b
LD R1, z LD R1, c
ADD RO, RO, R1 ADD RO, RO, R1
ST x, RO ST a, RO
LD RO, a
LD R1, e

ADD RO, RO, R1
ST d, RO

19



8.2 The Target Language

e Designing code generator requires understanding of target
machine and its instruction set

e Our machine model
— byte-addressable
— has n general purpose registers RO,R1,...,Rn — 1

— assumes operands are integers

20



Instructions of Target Machine

e Load operations: LD dst, addr
e.g., LD r,x or LD rq,7o

e Store operations: ST x,r

e Computation operations: OP dst,srcq,Srco
e.qg., SUB T1,7T2,73

e Unconditional jumps: BR L

e Conditional jumps: Bcond r, L
e.g., BLTZ r, L



Addressing Modes of Target Machine

Form | Address Example

T r LD R1,R2

X T LD R1,x

a(r) |a-+ contents(r) LD R1,a(R2)
c(r) |c—+ contents(r) LD R1,100(R2)
*T contents(r) LD R1, *xR2
xc(r) | contents(c + contents(r)) | LD R1, *100(R2)
+c LD R1,#100
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Addressing Modes (Examples)

b = ali]:

LD R1, i

MUL R1, R1, #8
LD R2, a(R1)
ST b, R2

aljl = c

LD Ri, c

LD R2, j

MUL R2, R2, #8
ST a(R2), Ri1

X = *p

LD R1, p
LD R2, O0(R1)
ST x, R2

if x < y goto L

LD Ri, x
LD R2, y
SUB R1, R1, R2
BLTZ R1, M

23



8.2.2 Program and Instruction Costs

e Costs associated with compiling / running a program

— Compilation time
— Size, running time, power consumption of target program

e Finding optimal target problem: undecidable

e (Simple) cost per target-language instruction:
— 1 + cost for addressing modes of operands
~ length (in words) of instruction

Examples:

instruction cost
LD RO, R1 1
LD RO, x 2
LD R1, *100(R2) 2
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3.4 Basic Blocks and Flow Graphs
1. Basic block: maximal sequence of consecutive three-address
instructions, such that

(a) Flow of control can only enter through first instruction of
block

(b) Control leaves block without halting or branching
2. Flow graph: graph with

nodes: basic blocks
edges: indicate flow between blocks

25



8.4.1 Determining Basic Blocks

e Determine leaders
1. First three-address instruction is leader
2. Any instruction that is target of goto is leader
3. Any instruction that immediately follows goto is leader

e For each leader, its basic block consists of leader and all
instructions up to next leader (or end of program)
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Determining Basic Blocks (Example)

Determine leaders

Pseudo code T hree-address code
for i =1 to 10 do 1) i=1
for j =1 to 10 do 2) j=1
ali, j] = 0.0: 3) tl =10 * i
for i=1 to 10 do 4)  t2 =tl + j
ali,i] = 1.0; 5) t3 =8 * t2
6) t4 = t3 - 88

7) alt4] = 0.0
8) j=3+1
9) if j <= 10 goto (3)
10) i=1+1
11) if i <= 10 goto (2)

12) i =1
13) tb =i -1
14) t6 = 88 * t5

15) a[t6] = 1.0
16) i=1i+1
17) if i <= 10 goto (13)



Determining
Determine leaders

Pseudo code

for: =1 to 10 do
for =1 to 10 do

alt, 7] = 0.0;
for: =1 to 10 do
ali,1] = 1.0;

Basic Blocks (Example)

T hree-address code

— 1)
— 2)
—  3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)

|

Il

i=1

j =1

tl = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4d = t3 - 88
altd] = 0.0
j=3+1

if j <= 10 goto (3)
i=1i+1

if i <= 10 goto (2)
i=1

th =i -1

t6 = 88 * tb

alté] = 1.0
i=1i+1

if i <= 10 goto (13)
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8.4.3 Flow Graphs

Edge from block B to block C

e if there is (un)conditional jump from end of B to beginning
of C

e if C immediately follows B in original order,
and B does not end in unconditional jump
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Flow Graph (Example)

T hree-address code ENTRY
— 1) i=1 y
— 2) j =1 By |i=1
— 3) t1 =10 % i
4) 12 = t1 + j B — )
5) t3 =8 x t2 > U
6) t4 =t3 - 88 — <
7) alt4] = 0.0 t1 =10 %1
8) j=3+1 t2 = t1 + ]
9) if j <= 10 goto (3) t3 = 8 * to
— 10) i=1i+1 Bs tqs = t3 - 88
11) if i <= 10 goto (2)
. 12) i = 1 altsg] = 0.0
—» 13) t5 =i - 1 j=3+1
14) t6 = 88 * t5 if j <= 10 goto Bs
15) a[t6] = 1.0 |
16) i=1i+1 5 i =1+ 1
17) if i <= 10 goto (13) 4 |if i <= 10 goto B
Bs i=1
tsg= 1 - 1
tg= 88 * tg
Be altel = 1.0




8.4.5 Loops

Loop is set of nodes in flow

graph
e With unique loop entry e
e Every node in L has

nonempty path in L to e
Example
e {B3}, with loop entry B3
e {B>,B3,B4}, with loop
entry Bo
e {Bg}, with loop entry Bg

A

tqg = t3 - 88

alts] = 0.0
j=3+1

if j <= 10 goto B3

A

Y

i=1+1
if i <= 10 goto B>

i=1
tsg= 1 - 1
te= 88 * tg




8.4.2 Next-Use Information

e Next-use information is needed for dead-code elimination and
register assignment

(1) x

a xb

(j) z=c+x

Instruction 5 uses value of x computed at ¢
x is live at 1,
i.e., we need value of x later

e For each three-address statement x = y op z in block, record
next-uses of x,y, z
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Determining Next-Use Information

For single basic block

e Assume all non-temporary variables are live on exit
(stored in symbol table)

e Make backward scan of instructions in block

e For each instruction 2. x =y op z

1. Attach to 7 current next-use- and liveness information of
:Ij?y?Z

2. Set x to ‘not live’ and ‘no next use’
3. Set y and z to ‘live’
Set ‘next uses’ of y and z to 1
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Determining Next-Use Information
(Example)

1) t=a-b |[NUG)=... NU@) =... NU(®D)=...
2) u=a-c¢ |NUu =... NU(@)=... NU( =...
3) v=t4+ v |NUV) =... NU =...
4) a=d NU(a) = ... NU() = ...
5) d=v+4+u|NU) =... NU(N)=... NUu) =...

Assume all variables are non-temporary, and thus are live on exit

Next-Use information in symbol table:

a b c d t u v

after line 5 (on exit)
before line 5

live, but next use is not known
not live
next use in line 1
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Determining Next-Use Information
(Example)

1) t=a-b NU(t) =3 NU(a) =2 NU(b) =-
2) u=a-c¢c |NU(u)=5 NU() = - NU(c) =-
3) v=t+4+ v |NU() =5 NU®K =-

4) a=d NU(a) = - NU(d) = —

5) d=v 4+ u|NU =- NUWV =- NUQU) =-

a b c d t u v

after line 5 (on exit)
before line 5

before line 4 —
pbefore line 3 - .
before line 2 2 - 2
before line 1 (onentry) |1 1 2

| o0 o1 o -

TN N N N
w W
Wwwaa o -

live, but next use is not known
not live
next use in line ¢



8.8.2 Passing Liveness Information over
Blocks

Example of loop

f la=b+c
d=d-5>b By

e =a+ f

b=d+f

e = a - ¢

36



Passing Liveness Information over Blocks

Example of loop

l bcdf
//7 a=b+c
d=d-b> B;
e =a+ £
acdef
acdf
acde D = d o+ T
f =a-4d B> B3
e =a-o¢c¢
cdef
bcdef
cdef
\_ b=d+c Ba b,d,e,f live
bcdef

b,c,d,e,f live
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3.6 A Simple Code Generator

Use of registers
e Operands of operation must be in registers
e [0 hold values of temporary variables
e To hold (global) values that are used in several blocks

e [0 manage run-time stack

Assumption: subset of registers available for block

Machine instructions of form
e LD reg, mem
e ST mem, reg
o OP reg,reg,reg
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8.6.1 Register and Address Descriptors

e Register descriptor keeps track of what is currently in register
— Example:

LD R, x — register R contains x

— Initially, all registers are empty

e Address descriptor keeps track of locations where current
value of a variable can be found

— Example:

LD R,x —xis (also) in R

— Information stored in symbol table

39



8.6.2 The Code-Generation Algorithm

For each three-address instruction x =y op z
1. Use getReg(x =y op z) to select registers Ry, Ry, R.

2. If y is not in Ry, then issue instruction LD Ry, v/,
where ¢/ is a memory location for y
(according to address descriptor)

3. If zisnotin R, ...

4. Issue instruction OP Ry, Ry, R.

Special case: z =1y ...

At end of block: store all variables that are live-on-exit and not
in their memory locations (according to address descriptor)
40



Managing Register / Address Descriptors

1. For the instruction LD R, x, ...
2. For the instruction ST =, R, ...

3. For an operation like ADD Ry, Ry, R, implementing x = y + z,
(c) Remove R; from addr. descr. of other variables
(d) Remove z from reg. descr. of other registers

(a) Change reg. descr. for Ry: only z

(b) Change addr. descr. for z: only in Ry (not in x itself!)

4. For the copy statement z =y, ...

41



Managing Register / Address Descriptors

Example: d=(a—b)+ (a—¢c)+ (a—c) a=...0ld value of d
t=a-b>
LD R1l, a
LD R2, b

SUB R2, R1, R2
u=a-=c

LD R3, c

SUB R1, R1, R3
v=1%t+nu

ADD R3, R2, R1
a=d

LD R2, d
d=v +u

ADD R1, R3, R1

exit
ST a, R2
ST d, R1
R1 R2 R3 a b C d t u \'s

42



Managing Register / Address Descriptors

Example: d=(a—b)+ (a—¢c)+ (a—c) a=...0ld value of d
t=a-b>»

LD Ri, a

LD R2, b

SUB R2, R1, R2
u=a-=c¢

LD R3, c

SUB R1, R1, R3
v=1T+u

ADD R3, R2, R1
a=d

LD R2, d
d=v +u

ADD R1, R3, R1

exit

ST a, R2

ST d, R1
R1 R2 R3 a b C d t u v
d a v a,R2| b c |d,R1 R3
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8.6.3 Design of Function getReg

For each instruction x =y op z

e TO compute Ry
1. If y is in register, — Ry
2. Else, if empty register available, — Ry

3. Else, select occupied register
For each register R and variable v in R
(a) If v is also somewhere else, then OK

(b) If v is x, and z is not z, then OK
(c) Else, if v is not used later, then OK
(d) Else, ST v, R is required

Take R with smallest number of stores

In fact, ...
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Alternative Function getReg

For each instruction x =y op z

e TOo compute Ry
1. If y is in register, — Ry
2. Else, if empty register available, — Ry

3. Else, select occupied register

For each register R and variable v in R
(a) If v is also in other register, then OK

(b) Else, if v is z, then not OK (i.e., do not take R)
(c) Else, if v is z, then OK
(d) Else, if v is not used later, then OK

(e) Else, if v is also in own memory location,
then add 1 to score of R (for future LD)

(f) Else, add 2 to score of R (for ST v, R and future LD)

Take R with smallest score
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8.6.3 Design of Function getReg
For each instruction x =y op z

e To compute Ry
1. If y is in register, — Ry
2. Else, if empty register available, — Ry

3. Else, select occupied register
For each register R and variable v in R
(a) If v is also somewhere else, then OK

(b) If v is z, and z is not %z, then OK
(c) Else, if v is not used later, then OK
(d) Else, ST v, R is required

Take R with smallest number of stores

e To compute Rz, similar with few differences (which?)
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8.6.3 Design of Function getReg

For each instruction x =y op z

e [O compute R,

1. If x is only value in register, — R,
(also if ¢z is y or z)

2. Else, if empty register available, — R

3. Else, select occupied register

For each register R and variable v in R
(a) If v is also somewhere else, then OK

(e.g., if v is y or z, just loaded)
(b) If v is  (also if x is y or z), then OK

(c) Else, if v is not used later, then OK
(v might also be y or z2)

(d) Else, ST v, R is required
Take R with smallest number of stores
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Design of Function getReg

For each instruction x = y, choose Ry = Ry
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Exercise 1

Addressing Modes of Target Machine

Form | Address Example

T T LD R1,x
a(r) |a-+ contents(r) | LD R1,a(R2)
#c LD R1, #100
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8.8 Register Allocation and Assignment
So far, live variables in registers are stored at end of block

Use of registers
e Operands of operation must be in registers
e [0 hold values of temporary variables
e To hold (global) values that are used in several blocks

e [0 manage run-time stack

50



8.8.2 Usage Counts

With x in register during loop L

e Save ... for ... use of x that is not preceded by assignment
in same block

e Save ... for each block, where x is assigned a value and x is
live on exit

Total savings ~ > .
blocks BeL

Choose variables x with largest savings
51



Savings for One Block

-

52



Usage Counts

With x in register during loop L

e Save 1 for each use of z that is not preceded by assignment
in same block

e Save 2 for each block, where x is assigned a value and x is
live on exit

Total savings ~ > use(xz, B) + 2 * live(x, B)
blocks BeL

Choose variables x with largest savings
53



Usage Counts (Example)

-

l bcdf
a=>b+c
d=d-b> B1
=a + £
acdef
acdf
acde D = d o+ T
f = a d B> B3
e =a-c¢
cdef
bcdef
cdef
b=d+ c Ba b,d,e,f live
bcdef

b,c,d,e,f live

Savings foraarel14+1+4+1x2 =4
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Komende week

e Woensdag 21 november, 11.00—12.45: practicum

e Donderdag 22 november: inleveren opdracht 3

e Vrijdag 23 november, 11.00—12.45: hoorcollege
+ introductie opdracht 4 (inleveren 13 december)

e Vrijdag 23 november, 13.30—...: werkcollege
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