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Why this course

It’s part of the general background of a software engineer

• How do compilers work?

• How do computers work?

• What machine code is generated for certain language con-

structs?

• Working on a non-trivial programming project

After the course

• Know how to build a compiler for a simplified progr. language

• Know how to use compiler construction tools, such as gen-

erators for scanners and parsers

• Be familiar with compiler analysis and optimization tech-

niques
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Prior Knowledge

• Algoritmiek

• Fundamentele Informatica 2
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Course Outline

• In class, we discuss the the-

ory using the ‘dragon book’ by

Aho et al.

• The theory is applied in the

practicum to build a compiler

that converts Pascal code to

MIPS instructions.

A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman,

Compilers: Principles, Techniques, and Tools (second edition),

Pearson, 2013, ISBN: 978-1-29202-434-9 (international edition).
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Course Outline

• In class, we discuss the the-

ory using the ‘dragon book’ by

Aho et al.

• The theory is applied in the

practicum to build a compiler

that converts Pascal code to

MIPS instructions.

A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman,

Compilers: Principles, Techniques, & Tools (second edition),

Pearson, 2006, ISBN: 978-0321486813
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Earlier edition

• Dragon book has been revised

in 2006

• In Second edition good im-

provements are made

– Parallelism

∗ . . .

∗ Array data-dependence

analysis

• First edition may also be used,

but not recommended

A.V. Aho, R. Sethi, and J.D. Ullman,

Compilers: Principles, Techniques, and Tools,

Addison-Wesley, 1986, ISBN-10: 0-201-10088-6 / 0-201-10194-7 (interna-

tional edition).
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Course Outline

• Contact

– Room 140, tel. 071-5272876, rvvliet(at)liacs(dot)nl

– Course website:

http://www.liacs.leidenuniv.nl/~vlietrvan1/coco/

Lecture slides, assignments, grades

• Practicum

– 4 self-contained assignments

– Teams of two students

– Assignments are submitted by e-mail

– Assistant: Dennis Roos

• Written exam

– 20 December 2018, 14:00–17:00

– 14 March 2019, 14:00–17:00
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Course Outline
• You need to pass all 4 assignments and the written exam to

obtain a sufficient grade

• Then, you obtain 6 EC

• Algorithm to compute final grade:

if (E >= 5.5)

{ if (A2,A3,A4 >= 5.5)

{ P = (A2+A3+A4)/3;

F = (E+P)/2;

}

else

F is undefined;

}

else

F = E;

Studying only from the lecture slides may not be sufficient.
Relevant book chapters will be given.
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Course Outline

(tentative)
1. Overview
2. Symbol Table / Lexical Analysis
3. Syntax Analysis 1 (+ exercise class)
4. Syntax Analysis 2 (+ exercise class)
5. Assignment 1
6. Static Type Checking
7. Assignment 2
8. Intermediate Code Generation 1 (+ lab session Wednesday)
9. Intermediate Code Generation 2 (+ exercise class)

10. Assignment 3
11. Storage Organization and Code Generation

(+ exercise class + lab session Wednesday)
12. Code optimization 1 (+ exercise class)
13. Assignment 4
14. Code Optimization 2 (+ exercise class + lab session Wednes-

day)
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Practicum

• Assignment 1: Calculator

• Assignment 2: Parsing & Syntax tree

• Assignment 3: Intermediate code

• Assignment 4: Assembly generation

2 × 2 academic hours of Lab session + 3 weeks to complete

(except assignment 1)

Strict deadlines (with one second chance)
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Short History of Compiler Construction

Formerly ‘a mystery’, today one of the best known areas of

computing

1957 Fortran first compilers

(arithmetic expressions, statements, procedures)

1960 Algol first formal language definition

(grammars in Backus-Naur form, block structure, recursion,

. . . )

1970 Pascal user-defined types, virtual machines (P-code)

1985 C++ object-orientation, exceptions, templates

1995 Java just-in-time compilation

We only consider imperative languages

Functional languages (e.g., Lisp) and logical languages (e.g.,

Prolog) require different techniques.
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1.1 Language Processors
• Compilation:

Translation of a program written in a source language into a

semantically equivalent program written in a target language

Source
Program

✲ Compiler

❄

Error messages

✲ Target
Program

Input

❄

❄

Output

• Interpretation:

Performing the operations implied by the source program.

Source Program

Input

✲

✲
Interpreter

❄

Error messages

✲ Output
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Compilers and Interpreters

• Compiler: Translates source code into machine code,

with scanner, parser, . . . , code generator

• Interpreter: Executes source code ‘directly’,

with scanner, parser

Statements in, e.g., a loop are scanned and parsed again and

again
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Compilers and Interpreters

• Hybrid compiler (Java):

– Translation of a program written in a source language into

a semantically equivalent program written in an interme-

diate language (bytecode)

– Interpretation of intermediate program by virtual machine,

which simulates physical machine

Source
Program

✲ Translator

❄

Error messages

✲ Intermed.
Program

✲ Virtual
Machine

Input

❄

❄

Output
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Compilation flow

source program

❄

Preprocessor

❄
modified source program

Compiler

❄
target assembly program

Assembler

❄
relocatable machine code

Linker/Loader
✛

library files
relocatable object files

❄

target machine code
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1.2 The Structure of a Compiler

Analysis-Synthesis Model

There are two parts to compilation:

• Analysis (front end)

– Determines the operations implied by the source program
which are recorded in an intermediate representation, e.g.,
a tree structure

• Synthesis (back end)

– Takes the intermediate representation and translates the
operations therein into the target program

Cf. editors with syntax highlighting or text auto completion
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The Phases of a Compiler

Symbol
Table

source program / character stream

❄

Lexical Analyser (scanner)

❄

Syntax Analyser (parser)

❄

Semantic Analyser

❄

Intermediate Code Generator

❄

Machine-Ind. Code optimizer

❄

Code Generator

❄

Machine-Dep. Code Optimizer

❄

target-machine code
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The Phases of a Compiler

Character stream:

position = initial + rate * 60

Lexical Analyser (scanner)

Token stream:

〈id,1〉 〈=〉 〈id,2〉 〈+〉 〈id,3〉 〈∗〉 〈num,60〉
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The Phases of a Compiler

Token stream:

〈id,1〉 〈=〉 〈id,2〉 〈+〉 〈id,3〉 〈∗〉 〈num,60〉

Syntax Analyser (parser)

Parse tree / syntax tree:

�
��

❅
❅❅

✑
✑

✑✑

◗
◗

◗◗

★
★

★
❝
❝
❝

stmt

id = expr

expr + term

term term ∗ factor

factor factor num

id id

✟✟✟✟
❍❍❍❍❍

✟✟✟✟
❍❍❍❍❍

✟✟✟✟
❍❍❍❍

=

〈id,1〉 +

〈id,2〉 ∗

〈id,3〉 〈num,60〉
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The Phases of a Compiler

Syntax tree:

✟✟✟✟
❍❍❍❍❍

✟✟✟✟
❍❍❍❍❍

✟✟✟✟
❍❍❍❍

=

〈id,1〉 +

〈id,2〉 ∗

〈id,3〉 〈num,60〉

Semantic Analyser

Syntax tree:

✟✟✟✟
❍❍❍❍❍

✟✟✟✟
❍❍❍❍❍

✟✟✟✟
❍❍❍❍❍

=

〈id,1〉 +

〈id,2〉 ∗

〈id,3〉 inttofloat

〈num,60〉

Coercion

A[i], int x, break, . . .
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The Phases of a Compiler

Syntax tree:

✟✟✟✟
❍❍❍❍❍

✟✟✟✟
❍❍❍❍❍

✟✟✟✟
❍❍❍❍❍

=

〈id,1〉 +

〈id,2〉 ∗

〈id,3〉 inttofloat

〈num,60〉

Intermediate Code Generator

Intermediate code (three-address code):

t1 = inttofloat(60)

t2 = id3 * t1

t3 = id2 + t2

id1 = t3

One operator, explicit order

Temporary variables

Less than three operands
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The Phases of a Compiler

Intermediate code (three-address code):

t1 = inttofloat(60)

t2 = id3 * t1

t3 = id2 + t2

id1 = t3

Code Optimizer

Intermediate code (three-address code):

t1 = id3 * 60.0

id1 = id2 + t1
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The Phases of a Compiler

Intermediate code (three-address code):

t1 = id3 * 60.0

id1 = id2 + t1

Code Generator

Target code (assembly code):

LDF R2, id3

MULF R2, R2, #60.0

LDF R1, id2

ADDF R1, R1, R2

STF id1, R1
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The Grouping of Phases

Phases constitute logical organization of compiler

Inefficient as implementation:

characters → Scanner → tokens → Parser → tree

→ Semantic analyser → . . .→ code

Phases are separate ‘programs’, which run sequentially

Each phase reads from a file and writes to a new file.
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The Grouping of Phases

Other extreme: single-pass compiler

do

scan token

parse token

check token

generate code for token

while (not eof)

Phases work in an interleaved way

Portion of code is generated while reading portion of source

program

Nowadays: often two-pass compiler
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1.2.8 The Grouping of Phases

• Front End:
scanning, parsing, semantic analysis, intermediate code gen-
eration
(source code → intermediate representation)

• (optional) machine independent code optimization

• Back End:
code generation, machine dependent code optimization
(intermediate representation → target machine code)

language-dependent

Java

C

Pascal

machine-dependent

Pentium

PowerPC

SPARC

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

PPPPPPPPPPPPPPPPPP

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭
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1.2.9 Compiler-Construction Tools

Software development tools are available to implement one or

more compiler phases

• Scanner generators

• Parser generators

• Syntax-directed translation engines

• Code generator generators

• Data-flow analysis engines
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The Structure of our compiler

Character
stream

✲ Lexical
Analyser

✲

Token
Stream Syntax-Directed

Translation
✲

MIPS
Assembly

Code

�
�
�
�
�

�
�
�
�✒

❆
❆

❆
❆

❆
❆

❆
❆
❆❑

Develop a parser and code generator

Syntax Definition (Grammar) MIPS Specification

Syntax-directed translation:

Using the syntactic structure of the language to generate output

corresponding to some input
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2.2 Syntax Definition

Context-free grammar is a 4-tuple with

• A set of nonterminals (syntactic variables)

• A set of terminal symbols (tokens)

• A designated start symbol (nonterminal)

• A set of productions: rules how to decompose nonterminals

Example: Context-free grammar for simple expressions:

G = ({list,digit}, {+,−,0,1,2,3,4,5,6,7,8,9}, list, P )

with productions P:

list → list + digit

list → list − digit

list → digit

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Derivation

Given a context-free grammar, we can determine the set of all

strings (sequences of tokens) generated by the grammar using

derivations:

• We begin with the start symbol

• In each step, we replace one nonterminal in the current form

with one of the right-hand sides of a production for that

nonterminal
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Derivation (Example)

G = ({list,digit}, {+,−,0,1,2,3,4,5,6,7,8,9}, list, P )

list → list + digit | list − digit | digit

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Example: 9-5+2

list ⇒ list + digit

⇒ list − digit + digit

⇒ digit − digit + digit

⇒ 9− digit + digit

⇒ 9− 5+ digit

⇒ 9− 5+ 2

This is an example of leftmost derivation, because we replaced
the leftmost nonterminal (underlined) in each step
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Parse Tree

(derivation tree in FI2)

• The root of the tree is labelled by the start symbol

• Each leaf of the tree is labelled by a terminal (=token) or ǫ

(=empty)

• Each interior node is labelled by a nonterminal

• If node A has children X1, X2, . . . , Xn, then there must be a

production A → X1X2 . . . Xn
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Parse Tree (Example)

Parse tree of the string 9− 5+ 2 using grammar G

✏✏✏✏✏✏✏✏✏✏

◗
◗
◗◗

✑
✑

✑✑

◗
◗

◗◗

list

list digit

list digit

digit

9 − 5 + 2

Yield of the parse tree: the sequence of leafs (left to right)

Parsing: the process of finding a parse tree for a given string

Language: the set of strings that can be generated by some parse tree
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Ambiguity

Consider the following context-free grammar:

G′ = ({string}, {+,−,0,1,2,3,4,5,6,7,8,9}, string, P )

with productions P

string → string + string | string − string | 0 | 1 | . . . | 9

This grammar is ambiguous, because more than one parse tree

generates the string 9− 5+ 2
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Ambiguity (Example)

Parse trees of the string 9− 5+ 2 using grammar G′

✏✏✏✏✏✏✏✏✏✏

◗
◗
◗◗

✑
✑

✑✑

◗
◗
◗◗

string

string string

string string

9 − 5 + 2

(9− 5) + 2 = 6

✑
✑

✑✑

PPPPPPPPPP

✑
✑

✑✑

◗
◗
◗◗

string

string string

string string

9 − 5 + 2

9− (5 + 2) = 2

Preferred. . .
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Associativity of Operators

By convention

9 + 5+ 2 = (9+ 5)+ 2
9− 5− 2 = (9− 5)− 2

}

left associative

In most programming languages:

+,−, ∗, / are left associative

∗∗,= are right associative:

a ∗ ∗b ∗ ∗c = a ∗ ∗(b ∗ ∗c)
a = b = c = a = (b = c)
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Precedence of Operators

Consider: 9 + 5 ∗ 2

Is this (9 + 5) ∗ 2 or 9 + (5 ∗ 2) ?

Associativity does not resolve this

Precedence of operators:

+−
∗ /

❄

increasing
precedence

Unambiguous grammar for arithmetic expressions: . . .

Example:

9 + 5 ∗ 2 ∗ 3+ 1+ 4 ∗ 7
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Precedence of Operators

Consider: 9 + 5 ∗ 2

Is this (9 + 5) ∗ 2 or 9 + (5 ∗ 2) ?

Associativity does not resolve this

Precedence of operators:

+−
∗ /

❄

increasing
precedence

Unambiguous grammar for arithmetic expressions:

expr → expr + term | expr − term | term

term → term ∗ factor | term/factor | factor

factor → digit | (expr)

digit → 0 | 1 | . . . | 9

Parse tree for 9 + 5 ∗ 2 . . .
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2.3 Syntax-Directed Translation

Using the syntactic structure of the language to generate output

corresponding to some input

Two techniques:

• Syntax-directed definition

• Translation scheme

Example: translation of infix notation to postfix notation

infix postfix

(9− 5) + 2 95− 2+
9− (5 + 2) 952+−

What is 952+−3∗ ?
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Syntax-Directed Translation

Using the syntactic structure of the language to generate output

corresponding to some input

Two variants:

• Syntax-directed definition

• Translation scheme

Example: translation of infix notation to postfix notation

Simple infix expressions generated by

expr → expr1 + term | expr1 − term | term

term → 0 | 1 | . . . | 9
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Syntax-Directed Definition (Example)

Production Semantic rule

expr → expr1 + term expr.t = expr1.t || term.t || ‘+′

expr → expr1 − term expr.t = expr1.t || term.t || ‘−′

expr → term expr.t = term.t

term → 0 term.t = ‘0′

term → 1 term.t = ‘1′

. . . . . .
term → 9 term.t = ‘9′

Result: annotated parse tree

Example: 9− 5+ 2
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Syntax-Directed Definition

• Uses a context-free grammar to specify the syntactic struc-

ture of the language

• Associates a set of attributes with (non)terminals

• Associates with each production a set of semantic rules for

computing values for the attributes

In example, attributes contain the translated form of the input

after the computations are completed

(postfix notation corresponding to subtree)
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Synthesized and Inherited Attributes

An attribute is said to be . . .

• synthesized if its value at a parse tree node N is determined

from attribute values at the children of N (and at N itself)

• inherited if its value at a parse tree node N is determined

from attribute values at the parent of N (and at N itself and

its siblings)

We (mainly) consider synthesized attributes
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2.3.4 Tree Traversals

• A syntax-directed definition does not impose an evaluation

order of the attributes on a parse tree

• Different orders might be suitable

• Tree traversal: a specific order to visit the nodes of a tree

(always starting from the root node)

• Depth-first traversal

– Start from root

– Recursively visit children (in any order)

– Hence, visit nodes far away from the root as quickly as it

can (DF)
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A Possible DF Traversal

Postorder traversal

procedure visit (node N)

{

for (each child C of N, from left to right)

{ visit (C);

}

evaluate semantic rules at node N;

}

Can be used to determine synthesized attributes / annotated

parse tree
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2.3.5 Translation Scheme

A translation scheme is a context-free grammar

with semantic actions embedded in the bodies of the productions

(which may also involve attributes of the grammar symbols)

Example

expr → expr1 + term | expr1 − term | term

term → 0 | 1 | . . . | 9
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Translation Scheme (Example)

expr → expr1 + term {print(’+’)}

expr → expr1 − term {print(’−’)}

expr → term

term → 0 {print(’0’)}

term → 1 {print(’1’)}

. . . . . .

term → 9 {print(’9’)}

Example: parse tree for 9− 5+ 2. . .

Implementation requires postorder traversal (LRW)
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Translations Scheme

Different grammar for same expressions:

rest → +term rest1

With semantic action:

rest → +term {print(’+’)} rest1

Corresponding effect on parse tree:

★
★

★
★

★
★

★
★

★

✓
✓

✓
✓

✓
✓

✓

...............

❝
❝
❝
❝

❝
❝
❝
❝❝

rest

+ term {print(’+’)} rest1
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Translations Scheme

Different grammar for same expressions:

expr → term rest

rest → +term rest1

rest → −term rest1

rest → ǫ

term → 0

term → . . .

With semantic action:

rest → +term {print(’+’)} rest1

rest → −term {print(’−’)} rest1

term → 0 {print(’0’)}

term → . . .

Complete parse tree 9− 5+ 2. . .
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2.4 Parsing

• Process of determining if a string of tokens can be generated

by a grammar

• For any context-free grammar, there is a parser that takes

at most O(n3) time to parse a string of n tokens

• Linear algorithms sufficient for parsing programming languages

• Two methods of parsing:

– Top-down constructs parse tree from root to leaves

– Bottom-up constructs parse tree from leaves to root

Cf. top-down PDA and bottom-up PDA in FI2
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Compilerconstructie

college 1

Overview

Chapters for reading: 1.1, 1.2, 2.1-2.3, 2.5
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