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9.2 Introduction to Data-Flow Analysis

• Optimizations depend on data-flow analysis, e.g.,

– Global common subexpression elimination

– Dead-code elimination

• Execution path yields program state at program point

• Extract information from program state for data-flow analy-

sis

• Usually infinite number of execution paths / program states

• Different analyses extract different information
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Data-Flow Analysis (Examples)

• Reaching definitions: which definitions (assignments of val-

ues) of variable x may reach program point?

– Useful for debugging:

May variable x be undefined?

– Useful for constant folding:

Can variable x only have one constant value at program

point?
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9.2.4 Computing Reaching Definitions

ENTRY

❄

d1: i = m-1

d2: j = n

d3: a = u1

B1

❄

d4: i = i+1

d5: j = j-1
B2

✟✟✟✟✟✟✟✟✟✟✙

d6: a = u2 B3
❍❍❍❍❍❍❍❍❍❍❥ ❄

d7: i = u3 B4

✬

✫

✲

❄

EXIT

Reaching definitions

• Before B1: ∅

• After B1: {d1, d2, d3}

• Before B2: . . .
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9.2.2 The Data Flow Analysis Schema

Data flow values

• IN[s]: before statement s

• OUT[s]: after statement s

• Transfer function fs

– forward: OUT[s] = fs(IN[s])

– backward: IN[s] = fs(OUT[s])
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Computing Reaching Definitions

• Effect of single definition d : u = v op w:

– OUT[d] = {d} ∪ (IN[d]− . . .)
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Computing Reaching Definitions

Effect of single definition d : u = v op w:

• OUT[d] = {d}∪(IN[d]−{all other definitions of u in program})

• Hence,

fd(x) = {d} ∪ (x− {all other definitions of u in program})

= gend ∪ (x− killd)

where

gend = {d}

killd = {all other definitions of u in program}
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Computing Reaching Definitions

Effect of block B, with definitions 1,2, . . . , n:

genB = {n, n− 1, . . . ,1} − { definitions killed afterwards }

= genn ∪ (genn−1 − killn) ∪ (genn−2 − killn−1 − killn) . . .

killB = kill1 ∪ kill2 ∪ . . . ∪ killn
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Computing Reaching Definitions

ENTRY

❄

d1: i = m-1

d2: j = n

d3: a = u1

B1

❄

d4: i = i+1

d5: j = j-1
B2

✟✟✟✟✟✟✟✟✟✟✙

d6: a = u2 B3
❍❍❍❍❍❍❍❍❍❍❥ ❄

d7: i = u3 B4

✬

✫

✲

❄

EXIT

genB1
= {d1, d2, d3}

killB1
= {d4, d5, d6, d7}

genB2
= {d4, d5}

killB2
= {d1, d2, d7}

genB3
= {d6}

killB3
= {d3}

genB4
= {d7}

killB4
= {d1, d4}
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Iterative Algorithm
for Computing Reaching Definitions
OUT[ENTRY] = ∅
for each basic block B other than ENTRY

OUT[B] = ∅

while (changes to any OUT occur)
for each basic block B other than ENTRY
{ IN[B] = ∪predecessors P of B

OUT[P ]

OUT[B] = genB ∪ (IN[B]− killB)
}

Typical form of algorithm for forward data-flow analysis

∪ is meet operator

Example with B = B1, B2, B3, B4,EXIT. . .
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Implementation of Iterative Algorithm
for Computing Reaching Definitions

With bit vectors

Block B OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000
B2 000 0000 111 0000 001 1100 111 0111 001 1110
B3 000 0000 001 1100 000 1110 001 1110 000 1110
B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 000 0000 001 0111 001 0111 001 0111
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9.2.5 Live-Variable Analysis

• Variable x is live at program point p,

if value of x at p could be used later along some path

• Otherwise x is dead at p

• Information useful for register allocation (see lecture 7)

• Information about later use must be propagated backwards
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Live-Variable Analysis

Effect of block B on live variables

• useB:

variables that may be used in B prior to any definition in B

(≈ gen)

• def B:

variables defined in B prior to any use of that variable in B

(≈ kill)

13



Computing Live Variables

ENTRY

❄

d1: i = m-1

d2: j = n

d3: a = u1

B1

❄

d4: i = i+1

d5: j = j-1
B2

✟✟✟✟✟✟✟✟✟✟✙

d6: a = u2 B3
❍❍❍❍❍❍❍❍❍❍❥ ❄

d7: i = u3 B4

✬

✫

✲

❄

EXIT

def B1
= {i, j, a}

useB1
= {m,n, u1}

def B2
= ∅

useB2
= {i, j}

def B3
= {a}

useB3
= {u2}

def B4
= {i}

useB4
= {u3}
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Iterative Algorithm
to Compute Live Variables
IN[EXIT] = ∅
for each basic block B other than EXIT

IN[B] = ∅

while (changes to any IN occur)
for each basic block B other than EXIT
{ OUT[B] = ∪successors S of B

IN[S]

IN[B] = useB ∪ (OUT[B]− def B)
}

Typical form of algorithm for backward data-flow analysis
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9.2.6 Available expressions

• Is (value of) expression x op y available?

• Useful for global common subexpression elimination

• Can be decided with data-flow analysis
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Available Expressions (Example)

t1 = 4*i B1

❄

t3 = 4*i B3
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Available Expressions (Example)

t1 = 4*i B1

❄

t3 = 4*i B3

✟✟✟✟✟✙

B2

❍❍❍❍❍❥

?
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Available Expressions (Example)

t1 = 4*i B1

❄

t3 = 4*i B3

✟✟✟✟✟✙

B2

❍❍❍❍❍❥

i = 17
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Available Expressions (Example)

t1 = 4*i B1

❄

t3 = 4*i B3

✟✟✟✟✟✙

B2

❍❍❍❍❍❥

i = 17

t2 = 4*i
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Available Expressions (Example)

t1 = 4*i B1

❄

t3 = 4*i B3

✟✟✟✟✟✙

B2

❍❍❍❍❍❥

i = 17

t1 = 4*i
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Computing Available Expressions

Effect of block B on available expressions

• e genB:

expressions y op z that are computed in B,

and for which y and z are not subsequently redefined

• e killB:

expressions y op z for which y and/or z are defined in B,

and that are not subsequently recomputed
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Computing e genB (Example)

S = ∅

For each statement x = y op z in block B (forwards)

• add y op z to S

• delete from S any expression involving x

Statement Available Expressions S

∅
a = b + c

{b+ c}
b = a - d

{a− d}
c = b + c

{a− d}
d = a - d

∅
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Computing Available Expressions
OUT[ENTRY] = ∅
for each basic block B other than ENTRY

OUT[B] = U

while (changes to any OUT occur)
for each basic block B other than ENTRY
{ IN[B] = ∩predecessors P of B

OUT[P ]

OUT[B] = e genB ∪ (IN[B]− e killB)
}

Why U . . .
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Available Expressions (Example)

ENTRY

❄

a = b+c B1

❄

d = a+e

e = d+c
B2

❄

✬
✫

✲

d = b+c B3

❄

EXIT
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Efficient Iterative Data-Flow Analysis

Example: computing reaching definitions

OUT[ENTRY] = ∅
for each basic block B other than ENTRY

OUT[B] = ∅

while (changes to any OUT occur)
for each basic block B other than ENTRY
{ IN[B] = ∪predecessors P of B

OUT[P ]

OUT[B] = genB ∪ (IN[B]− killB)
}

Order of blocks in second for-loop matters
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Efficient Iterative Data-Flow Analysis

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✟✟✟✟✟✙

❄
❍❍❍❍❍❥

❄

✻

✟✟✟✟✟✙

❍❍❍❍❍❥

❍❍❍❍❍❥

✟✟✟✟✟✙

❄

✟✟✟✟✟✙

❍❍❍❍❍❥❏
❏

❏
❏

❏
❏

❏
❏❪

1

2

3

4

5 6

7

8

9 10

✬

✫

✲

✬

✫

✲

✩

✪

✛

Order of blocks in second for-loop matters
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Exercises
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Flow Graph For Data Flow Analysis
ENTRY

❄

(1) a = 1

(2) b = 2
B1

❄

(3) c = a+b

(4) d = c-a B2✏✏✏✏✏✏✏✮

(5) d = b+d
B3

❄

(6) d = a+b

(7) e = e+1

B4

PPPPPPPq

(8) b = a+b

(9) e = c-a

B5

❄

(10) a = b+d

(11) b = a-d
B6

❄

EXIT

✬

✫

✲

✩

✪

✛

29



9.6 Loops in Flow Graphs

• Optimizations of loops have significant impact

• Loops affect speed of convergence of iterative DFA

• Essential to identify loops

• Used in region based analysis (not for exam)

30



9.6.1 Dominators

• Dominators:

– Node d dominates node n if every path from ENTRY node

to n goes through d: d dom n

– Node n dominates itself

– Loop entry dominates all nodes in loop

• Immediate dominator m of n:

last dominator on (any) path from ENTRY node to n

– if d 6= n and d dom n, then d dom m
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Dominators (Example)

✚✙
✛✘

✚✙
✛✘
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❄
❍❍❍❍❍❥

❄

✻

✟✟✟✟✟✙

❍❍❍❍❍❥

❍❍❍❍❍❥

✟✟✟✟✟✙

❄

✟✟✟✟✟✙

❍❍❍❍❍❥❏
❏

❏
❏

❏
❏

❏
❏❪

1

2

3

4

5 6

7

8

9 10

✬

✫

✲

✬

✫

✲

✩

✪

✛
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Dominator Trees (Example)
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Finding Dominators

Forward data-flow analysis

N is set of all nodes

OUT[ENTRY] = {ENTRY}
for each node n other than ENTRY

OUT[n] = N

while (changes to any OUT occur)
for each node n other than ENTRY
{ IN[n] = ∩predecessors m of n

OUT[m]

OUT[n] = IN[n] ∪ {n}
}
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9.6.2 Depth-First Ordering

• Depth-first traversal of graph

– Start from entry node

– Recursively visit neighbours (in any order)

– Hence, visit nodes far away from the entry node as quickly

as it can (DF)
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A Depth-First Spanning Tree
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9.6.3 Edges in Depth-First Spanning Tree
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✛ • Advancing edges

• Retreating edges

• Cross edges

• Back edge a → b,

if b dominates a

(regardless of DFST)

• Each back edge is

retreating edge in DFST

• Flow graph is reducible,

if each retreating edge in

any DFST is back edge
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9.6.4 Reducibility

• In practice, almost every flow graph is reducible

• Example of nonreducible flow graph
(with advancing edges)

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘�

��✠

❅
❅❅❘✲

✛

1

2 3

• To decide on reducibility:

1. Remove back edges

2. Is remaining graph acyclic?
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9.6.6 Natural loops

• If loop has single-entry node, then compiler can assume cer-
tain initial conditions

• Natural loop

1. Has single-entry node: header

2. Has back edge to header

• Each back edge n → d determines natural loop, consisting of

– d

– all nodes that can reach n without going through d

• Constructing natural loop of back edge. . .
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Natural Loops (Example)
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No Natural Loops

✚✙
✛✘

✚✙
✛✘
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2 3
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Natural Loops

• Useful property: unless two natural loops have same header

– either they are disjoint

– or one is nested within other

Allows for inside-out optimization

• Assumption: if necessary, combine natural loops with same

header. . .
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9.6.2 A Depth-First Ordering
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✛ • Depth-First Ordering:

nodes in DFST

in WRL order ≈

reverse of postorder

• Example:

1,2,3,4,5,6,7,8,9,10

• Edge m → n is

retreating, if and only if

n comes before m

in depth-first ordering
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9.6.5 Depth of Flow Graph

• Depth of DFST is largest number of retreating edges on any

cycle-free path

• If flow graph is reducible, then depth is independent of DFST:

depth of flow graph

• Depth ≤ depth of loop nesting in flow graph
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Depth of Flow Graph (Example)
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✛ Depth is 3, because of path

10 → 7 → 4 → 3
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9.6.7 Speed of Convergence
of Iterative Data-Flow Algorithms

In data-flow analysis, can significant events be propagated to
node along acyclic path?

• Yes for

– Reaching definitions

– Live-variable analysis

– Available expressions

• No for

– Copy propagation

If yes, then fast convergence possible
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Efficient Iterative Data-Flow Analysis

Example: computing reaching definitions

OUT[ENTRY] = ∅
for each basic block B other than ENTRY

OUT[B] = ∅

while (changes to any OUT occur)
for each basic block B other than ENTRY
{ IN[B] = ∪predecessors P of B

OUT[P ]

OUT[B] = genB ∪ (IN[B]− killB)
}

Order of blocks in second for-loop matters
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Fast Convergence

• Forward data-flow problem: visit nodes in depth-first-order

• Recall: edge m → n is retreating, if and only if n comes
before m in depth-first ordering

• Example: path of propagation of definition d:

3 → 5 → 19 → 35 → 16 → 23 → 45 → 4 → 10 → 17

• Number of iterations: 1 + depth (+ 1)

• Typical flow graphs have depth 2.75

• Backward data-flow problem: visit nodes in reverse of depth-
first-order
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En verder. . .

• Dinsdag 2 december: practicum over opdracht 4

• Maandag 8 december: inleveren opdracht 4

• Maandag 15 december, 14:00–17:00: tentamen

• Vragenuur ?
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Compiler constructie

college 9

Code Optimization

Chapters for reading:

9.2, 9.6
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