Compilerconstructie
najaar 2014
http://www.liacs.nl/home/rvvliet/coco/
Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 7, dinsdag 4 november 2014
-+ ‘werkcollege’

Storage Organization

Code Generation

7.1 Storage Organization

Stack

|

Free Memory

T

Heap

Static

Code

Typical subdivision of run-time memory into code and data areas

2

7.2 Stack Allocation of Space

int a[11];
void readArray() /* Reads 9 integers into alll,...a[9]. */
{ int 1i;

}

int partition (int m, int n)

{ /* Picks a separator value v, and partitions al[m..n] so that
alm..p-1] are less than v, alpl=v, and al[p+l..n} are
equal to or greater than v. Returns p. */

+

void quicksort (int m, int n)

{ int 1i;

if (n > m)

{ i = partition(m, n);
quicksort(m, i-1);
quicksort(i+l, n);

+

+

main ()

{ readArray();

al0] = -9999;

a[10] = 9999;

quicksort(1,9);

Possible Activations

enter main()
enter readArray()
leave readArray()
enter quicksort(1,9)
enter partition(1,9)
leave partition(1,9)
enter quicksort(1,3)

leave quicksort(1,3)
enter quicksort(5,9)

leave quicksort(5,9)
leave quicksort(1,9)
leave main()

7.2.1 Activation Trees

m

p(1,9) q(1,3) q(5,9)
p(1,3) q(1,0) q(2,3) p(5,9) q(5,5) q(7,9)

p(2,3) q(2,1) q(3,3) p(7,9) q(7,7) q(9,9)

Traversal of Activation Tree

1. Sequence of procedure calls ~ preorder traversal

2. Sequence of procedure returns ~ postorder traversal

3. When control lies at particular node (& activation),
the ‘open’ (live) activations are on path from root

7.2.2. Activation Records

Actual parameters

Returned values

Control link

Access link

Saved machine status

Local data

Temporaries

Possible (order of) elements of activation record

7.2.3 Calling Sequences
e Code to allocate (and fill) activation record on stack
e Divided between caller (at every location) and callee

e Return sequences analogous

8 Code Generation

source Front |intermediatei Code !intermediate

—>

program End code =§Optimizer§ code

e Output code must

— be correct

Code
Generator

target

>

program

— use resources of target machine effectively

e Code generator must run efficiently

Generating optimal code is undecidable problem
Heuristics are available

8.1 Issues in Design of Code Generator
e Input to the code generator
e [he target program
e Instruction selection
e Register allocation and assignment

e Evaluation order

10

8.1.1 Input to the Code Generator

e Intermediate representation of source program
— Three-address representations (e.g., quadruples)
— Virtual machine representations (e.g., bytecodes)
— Postfix notation

— Graphical representations (e.g., syntax trees and DAGS)

e Information from symbol table to determine run-time ad-
dresses

e Input is free of errors

— Type checking and conversions have been done

11

8.1.2 The Target Program

e Common target-machine architectures
— RISC: reduced instruction set computer
— CISC: complex instruction set computer

— Stack-based

e Possible output
— Absolute machine code (executable code)
— Relocatable machine code (object files for linker)

— Assembly-language

12

8.1.3 Instruction Selection

e Given IR program can be implemented by many different
code sequences

e Different machine instruction speeds

e Naive approach: statement-by-statement translation, with a
code template for each IR statement

Example: =y + = Now, a =b+c¢c d=a-te
LD RO, y LD RO, b
LD R1, =z LD R1, c
ADD RO, RO, R1 ADD RO, RO, R1
ST x, RO ST a, RO
LD RO, a
LD R1, e
ADD RO, RO, R1
ST d, RO

13

8.2 The Target Language

e Designing code generator requires understanding of target
machine and its instruction set

e Our machine model
— byte-addressable
— has n general purpose registers RO,R1,...,Rn — 1

— assumes operands are integers

14

Instructions of Target Machine

e Load operations: LD dst, addr
e.g., LD r,x or LD rq,7o

e Store operations: ST x,r

e Computation operations: OP dst,srcq,Srco
e.qg., SUB T1,7T2,73

e Unconditional jumps: BR L

e Conditional jumps: Bcond r, L
e.g., BLTZ r, L

Addressing Modes of Target Machine

Form | Address Example

T r LD R1,R2

X T LD R1,x

a(r) |a-+ contents(r) LD R1,a(R2)
c(r) |c—+ contents(r) LD R1,100(R2)
*T contents(r) LD R1, *xR2
xc(r) | contents(c + contents(r)) | LD R1, *100(R2)
+c LD R1,#100

16

Addressing Modes (Examples)

b = ali]:

LD R1, i

MUL R1, R1, #8
LD R2, a(R1)
ST b, R2

aljl = c

LD Ri, c

LD R2, j

MUL R2, R2, #8
ST a(R2), Ri1

X = *p

LD R1, p
LD R2, O0(R1)
ST x, R2

if x < y goto L

LD Ri, x
LD R2, y
SUB R1, R1, R2
BLTZ R1, M

17

8.2.2 Program and Instruction Costs

e Costs associated with compiling / running a program

— Compilation time
— Size, running time, power consumption of target program

e Finding optimal target problem: undecidable

e (Simple) cost per target-language instruction:
— 1 + cost for addressing modes of operands
~ length (in words) of instruction

Examples:

instruction cost
LD RO, R1 1
LD RO, x 2
LD R1, *100(R2) 2

18

3.4 Basic Blocks and Flow Graphs
1. Basic block: maximal sequence of consecutive three-address
instructions, such that

(a) Flow of control can only enter through first instruction of
block

(b) Control leaves block without halting or branching
2. Flow graph: graph with

nodes: basic blocks
edges: indicate flow between blocks

19

8.4.1 Determining Basic Blocks

e Determine leaders
1. First three-address instruction is leader
2. Any instruction that is target of goto is leader
3. Any instruction that immediately follows goto is leader

e For each leader, its basic block consists of leader and all
instructions up to next leader (or end of program)

20

Determining Basic Blocks (Example)

Determine leaders

Pseudo code T hree-address code
for i =1 to 10 do 1) i=1
for j =1 to 10 do 2) j=1
ali, j] = 0.0: 3) tl =10 * i
for i=1 to 10 do 4) t2 =tl + j
ali,i] = 1.0; 5) t3 =8 * t2
6) t4 = t3 - 88

7) alt4] = 0.0
8) j=3+1
9) if j <= 10 goto (3)
10) i=1+1
11) if i <= 10 goto (2)

12) i =1
13) tb =i -1
14) t6 = 88 * t5

15) a[t6] = 1.0
16) i=1i+1
17) if i <= 10 goto (13)

Determining
Determine leaders

Pseudo code

for: =1 to 10 do
for =1 to 10 do

alt, 7] = 0.0;
for: =1 to 10 do
ali,1] = 1.0;

Basic Blocks (Example)

T hree-address code

— 1)
— 2)
— 3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)

|

Il

i=1

j =1

tl = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4d = t3 - 88
altd] = 0.0
j=3+1

if j <= 10 goto (3)
i=1i+1

if i <= 10 goto (2)
i=1

th =i -1

t6 = 88 * tb

alté] = 1.0
i=1i+1

if i <= 10 goto (13)

22

8.4.3 Flow Graphs

Edge from block B to block C

e if there is (un)conditional jump from end of B to beginning
of C

e if C immediately follows B in original order,
and B does not end in unconditional jump

23

Flow Graph (Example)

T hree-address code

—
—
—

|

I

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)

i=1

j =1

tl = 10 * i

t2 = tl + j

t3 = 8 * t2

t4 = t3 - 88
alt4] = 0.0

j=3+1

if j <= 10 goto (3)
i=1i+1

if i <= 10 goto (2)
i=1

tb =1 -1
t6 = 88 *x t5
a[té] = 1.0

i=1i+1
if i <= 10 goto (13)

Ba

ENTRY
i=1
j=1)
t, = 10 * i) ™
to = t1 + j
tz3 = 8 *x to
tqg = t3 - 88
alts] = 0.0
j=3+1
if j <= 10 goto B3 -
i=1i+1
if i <= 10 goto B>
i=1

24

8.4.5 Loops

Loop is set of nodes in flow
graph
e With unique loop entry e
e Every node in L has
nonempty path in L to e
Example
e {B3}, with loop entry B3
e {B>, B3, Bs}, with loop
entry Bo
e {Bg}, with loop entry Bg

- 88

0.0

1

10 goto Bs3

Y

1
10 goto B»

25

8.4.2 Next-Use Information

e Next-use information is needed for dead-code elimination and
register assignment

(1) x

a xb

(j) z=c+x

Instruction 5 uses value of x computed at ¢
x is live at 1,
i.e., we need value of x later

e For each three-address statement x = y op z in block, record
next-uses of x,y, z

26

Determining Next-Use Information

For single basic block

e Assume all non-temporary variables are live on exit
(stored in symbol table)

e Make backward scan of instructions in block

e For each instruction 2. x =y op z

1. Attach to 7 current next-use- and liveness information of
:Ij?y?Z

2. Set x to ‘not live’ and ‘no next use’
3. Set y and z to ‘live’
Set ‘next uses’ of y and z to 1

27

8.8.2 Passing Liveness Information over
Blocks

Example of loop

f la=b+c
d=d-5>b By

e =a+ f

b=d+f

e = a - ¢

28

Passing Liveness Information over Blocks

Example of loop

l bcdf
//7 a=b+c
d=d-b> B;
e =a+ £
acdef
acdf
acde D = d o+ T
f =a-4d B> B3
e =a-o¢c¢
cdef
bcdef
cdef
_ b=d+c Ba b,d,e,f live
bcdef

b,c,d,e,f live

29

3.6 A Simple Code Generator

Use of registers
e Operands of operation must be in registers
e [0 hold values of temporary variables
e To hold (global) values that are used in several blocks

e [0 manage run-time stack

Assumption: subset of registers available for block

Machine instructions of form
e LD reg, mem
e ST mem, reg
o OP reg,reg,reg

30

8.6.1 Register and Address Descriptors

e Register descriptor keeps track of what is currently in register
— Example:

LD R, x — register R contains x

— Initially, all registers are empty

e Address descriptor keeps track of locations where current
value of a variable can be found

— Example:

LD R,x —xis (also) in R

— Information stored in symbol table

31

8.6.2 The Code-Generation Algorithm

For each three-address instruction x =y op z
1. Use getReg(x =y op z) to select registers Ry, Ry, R.

2. If y is not in Ry, then issue instruction LD Ry, v/,
where ¢/ is a memory location for y
(according to address descriptor)

3. If zisnotin R, ...

4. Issue instruction OP Ry, Ry, R.

Special case: z =1y ...

At end of block: store all variables that are live-on-exit and not
in their memory locations (according to address descriptor)
32

Managing Register / Address Descriptors

1. For the instruction LD R, x, ...
2. For the instruction ST =, R, ...

3. For an operation like ADD Ry, Ry, R, implementing x = y + z,
(c) Remove R; from addr. descr. of other variables
(d) Remove z from reg. descr. of other registers

(a) Change reg. descr. for Ry: only z

(b) Change addr. descr. for z: only in Ry (not in x itself!)

4. For the copy statement z =y, ...

33

Managing Register / Address Descriptors

Example: d=(a—b)+ (a—¢c)+ (a—c) a=...0ld value of d
t=a-b>
LD R1l, a
LD R2, b

SUB R2, R1, R2
u=a-=c

LD R3, c

SUB R1, R1, R3
v=1%t+nu

ADD R3, R2, R1
a=d

LD R2, d
d=v +u

ADD R1, R3, R1

exit
ST a, R2
ST d, R1
R1 R2 R3 a b C d t u \'s

34

Managing Register / Address Descriptors

Example: d=(a—b)+ (a—¢c)+ (a—c) a=...0ld value of d
t=a-b>»

LD Ri, a

LD R2, b

SUB R2, R1, R2
u=a-=c¢

LD R3, c

SUB R1, R1, R3
v=1T+u

ADD R3, R2, R1
a=d

LD R2, d
d=v +u

ADD R1, R3, R1

exit

ST a, R2

ST d, R1
R1 R2 R3 a b C d t u v
d a v a,R2| b c |d,R1 R3

35

8.6.3 Design of Function getReg

For each instruction x =y op z

e TOo compute Ry
1. If y is in register, — Ry
2. Else, if empty register available, — Ry

3. Else, select occupied register
For each register R and variable v in R
(a) If v is also somewhere else, then OK

(b) If v is x, and z is not z, then OK
(c) Else, if v is not used later, then OK
(d) Else, ST v, R is required

Take R with smallest number of stores

36

Design of Function getReg

For each instruction x =y op z
e To compute Ry, similar with few differences (which?)

For each instruction x = y, choose Ry = Ry

37

Exercise 1

38

Addressing Modes of Target Machine

Form | Address Example

T r LD R1,R2

x T LD R1,x

a(r) |a-+ contents(r) LD R1,a(R2)
c(r) |c+ contents(r) LD R1,100(R2)
*T contents(r) LD R1, *xR2
xc(r) | contents(c + contents(r)) | LD R1,*100(R2)
¢ LD R1, #100

39

8.8 Register Allocation and Assignment
So far, live variables in registers are stored at end of block

Use of registers
e Operands of operation must be in registers
e [0 hold values of temporary variables
e To hold (global) values that are used in several blocks

e [0 manage run-time stack

40

8.8.2 Usage counts

With x in register during loop L

e Save ... for ... use of x that is not preceded by assignment
in same block

e Save ... for each block, where x is assigned a value and x is
live on exit

Total savings ~ > .
blocks BeL

Choose variables x with largest savings
41

Usage counts

With x in register during loop L

e Save 1 for each use of z that is not preceded by assignment
in same block

e Save 2 for each block, where x is assigned a value and x is
live on exit

Total savings ~ > use(xz, B) + 2 * live(x, B)
blocks BeL

Choose variables x with largest savings
42

Usage counts (Example)

R l bcdf
/fﬁ a=Db+c
d=d-D> B1
=a + £
acdef
acdf
acde D = d o+ T
f = a d B> B3
e =a-=c¢
cdef
bcdef
cdef
_ b=d+c By b,d,e,f live
bcdef

b,c,d,e,f live

Savings foraarel14+1+4+1x2 =4

43

Compiler constructie

college 7
Storage Organization
Code Generation

Chapters for reading:
7.1, 7.2-7.2.3
8.intro, 8.1, 8.2, 8.4, 8.6, 8.8—8.8.2

44

