
Compilerconstructie

najaar 2014

http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 7, dinsdag 4 november 2014

+ ‘werkcollege’

Storage Organization

Code Generation

1



7.1 Storage Organization

Stack

Free Memory

Heap

Static

Code

❄

✻

Typical subdivision of run-time memory into code and data areas

2



7.2 Stack Allocation of Space
int a[11];
void readArray() /* Reads 9 integers into a[1],...a[9]. */
{ int i;

...
}
int partition (int m, int n)
{ /* Picks a separator value v, and partitions a[m..n] so that

a[m..p-1] are less than v, a[p]=v, and a[p+1..n} are
equal to or greater than v. Returns p. */

...
}
void quicksort (int m, int n)
{ int i;

if (n > m)
{ i = partition(m, n);

quicksort(m, i-1);
quicksort(i+1, n);

}
}
main ()
{ readArray();

a[0] = -9999;
a[10] = 9999;
quicksort(1,9);

}

3



Possible Activations
enter main()

enter readArray()
leave readArray()
enter quicksort(1,9)

enter partition(1,9)
leave partition(1,9)
enter quicksort(1,3)

...
leave quicksort(1,3)
enter quicksort(5,9)

...
leave quicksort(5,9)

leave quicksort(1,9)
leave main()

4



7.2.1 Activation Trees
✏✏✏✏✏✏✏✏✏✏✏✏

◗
◗
◗
◗◗

✘✘✘✘✘✘✘✘✘✘✘✘✘

✑
✑

✑
✑✑

❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵

✟✟✟✟✟✟

❍❍❍❍❍❍

✟✟✟✟✟✟

❍❍❍❍❍❍

✟✟✟✟✟✟

❍❍❍❍❍❍

✟✟✟✟✟✟

❍❍❍❍❍❍

m

r q(1,9)

p(1,9) q(1,3) q(5,9)

p(1,3) q(1,0) q(2,3) p(5,9) q(5,5) q(7,9)

p(2,3) q(2,1) q(3,3) p(7,9) q(7,7) q(9,9)

5



Traversal of Activation Tree

1. Sequence of procedure calls ≈ preorder traversal

2. Sequence of procedure returns ≈ postorder traversal

3. When control lies at particular node (≈ activation),

the ‘open’ (live) activations are on path from root

6



7.2.2. Activation Records

Temporaries

Local data

Saved machine status

Access link

Control link

Returned values

Actual parameters

Possible (order of) elements of activation record

7



7.2.3 Calling Sequences

• Code to allocate (and fill) activation record on stack

• Divided between caller (at every location) and callee

• Return sequences analogous

8



8 Code Generation

source

program
✲ Front

End
✲intermediate

code

Code
Optimizer

✲intermediate

code

Code
Generator

✲
target

program

• Output code must

– be correct

– use resources of target machine effectively

• Code generator must run efficiently

Generating optimal code is undecidable problem

Heuristics are available

9



8.1 Issues in Design of Code Generator

• Input to the code generator

• The target program

• Instruction selection

• Register allocation and assignment

• Evaluation order

10



8.1.1 Input to the Code Generator

• Intermediate representation of source program

– Three-address representations (e.g., quadruples)

– Virtual machine representations (e.g., bytecodes)

– Postfix notation

– Graphical representations (e.g., syntax trees and DAGs)

• Information from symbol table to determine run-time ad-

dresses

• Input is free of errors

– Type checking and conversions have been done

11



8.1.2 The Target Program

• Common target-machine architectures

– RISC: reduced instruction set computer

– CISC: complex instruction set computer

– Stack-based

• Possible output

– Absolute machine code (executable code)

– Relocatable machine code (object files for linker)

– Assembly-language

12



8.1.3 Instruction Selection

• Given IR program can be implemented by many different
code sequences

• Different machine instruction speeds

• Naive approach: statement-by-statement translation, with a
code template for each IR statement

Example: x = y + z

LD RO, y
LD R1, z
ADD R0, R0, R1
ST x, R0

Now, a = b+c d = a+e

LD RO, b
LD R1, c
ADD R0, R0, R1
ST a, R0
LD RO, a
LD R1, e
ADD R0, R0, R1
ST d, R0

13



8.2 The Target Language

• Designing code generator requires understanding of target

machine and its instruction set

• Our machine model

– byte-addressable

– has n general purpose registers R0, R1, . . . , Rn− 1

– assumes operands are integers

14



Instructions of Target Machine

• Load operations: LD dst,addr

e.g., LD r, x or LD r1, r2

• Store operations: ST x, r

• Computation operations: OP dst, src1, src2
e.g., SUB r1, r2, r3

• Unconditional jumps: BR L

• Conditional jumps: Bcond r, L

e.g., BLTZ r, L

15



Addressing Modes of Target Machine

Form Address Example

r r LD R1, R2

x x LD R1, x

a(r) a+ contents(r) LD R1, a(R2)
c(r) c+ contents(r) LD R1, 100(R2)
∗r contents(r) LD R1, ∗R2
∗c(r) contents(c+ contents(r)) LD R1, ∗100(R2)
#c LD R1,#100

16



Addressing Modes (Examples)

b = a[i]:

LD R1, i
MUL R1, R1, #8
LD R2, a(R1)
ST b, R2

a[j] = c

LD R1, c
LD R2, j
MUL R2, R2, #8
ST a(R2), R1

x = *p

LD R1, p
LD R2, 0(R1)
ST x, R2

if x < y goto L

LD R1, x
LD R2, y
SUB R1, R1, R2
BLTZ R1, M

17



8.2.2 Program and Instruction Costs

• Costs associated with compiling / running a program

– Compilation time

– Size, running time, power consumption of target program

• Finding optimal target problem: undecidable

• (Simple) cost per target-language instruction:

– 1 + cost for addressing modes of operands

≈ length (in words) of instruction

Examples:

instruction cost

LD R0, R1 1
LD R0, x 2
LD R1, *100(R2) 2

18



8.4 Basic Blocks and Flow Graphs

1. Basic block: maximal sequence of consecutive three-address

instructions, such that

(a) Flow of control can only enter through first instruction of

block

(b) Control leaves block without halting or branching

2. Flow graph: graph with

nodes: basic blocks

edges: indicate flow between blocks

19



8.4.1 Determining Basic Blocks

• Determine leaders

1. First three-address instruction is leader

2. Any instruction that is target of goto is leader

3. Any instruction that immediately follows goto is leader

• For each leader, its basic block consists of leader and all

instructions up to next leader (or end of program)

20



Determining Basic Blocks (Example)

Determine leaders

Pseudo code

for i = 1 to 10 do
for j = 1 to 10 do

a[i, j] = 0.0;
for i = 1 to 10 do

a[i, i] = 1.0;

Three-address code

1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)

10) i = i + 1
11) if i <= 10 goto (2)
12) i = 1
13) t5 = i - 1
14) t6 = 88 * t5
15) a[t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

21



Determining Basic Blocks (Example)

Determine leaders

Pseudo code

for i = 1 to 10 do
for j = 1 to 10 do

a[i, j] = 0.0;
for i = 1 to 10 do

a[i, i] = 1.0;

Three-address code

−→ 1) i = 1
−→ 2) j = 1
−→ 3) t1 = 10 * i

4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)

−→ 10) i = i + 1
11) if i <= 10 goto (2)

−→ 12) i = 1
−→ 13) t5 = i - 1

14) t6 = 88 * t5
15) a[t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

22



8.4.3 Flow Graphs

Edge from block B to block C

• if there is (un)conditional jump from end of B to beginning

of C

• if C immediately follows B in original order,

and B does not end in unconditional jump

23



Flow Graph (Example)

Three-address code

−→ 1) i = 1
−→ 2) j = 1
−→ 3) t1 = 10 * i

4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)

−→ 10) i = i + 1
11) if i <= 10 goto (2)

−→ 12) i = 1
−→ 13) t5 = i - 1

14) t6 = 88 * t5
15) a[t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

ENTRY

❄

i = 1B1

❄
j = 1B2

❄
t1 = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4 = t3 - 88

a[t4] = 0.0

j = j + 1

if j <= 10 goto B3

B3

✩

✪

✛

❄

i = i + 1

if i <= 10 goto B2

✩

✪

✛

B4

❄

i = 1B5

❄
24



8.4.5 Loops

Loop is set of nodes in flow

graph

• With unique loop entry e

• Every node in L has

nonempty path in L to e

Example

• {B3}, with loop entry B3

• {B2, B3, B4}, with loop

entry B2

• {B6}, with loop entry B6

ENTRY

❄

i = 1B1

❄
j = 1B2

❄
t1 = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4 = t3 - 88

a[t4] = 0.0

j = j + 1

if j <= 10 goto B3

B3

✩

✪

✛

❄

i = i + 1

if i <= 10 goto B2

✩

✪

✛

B4

❄

i = 1B5

❄
25



8.4.2 Next-Use Information

• Next-use information is needed for dead-code elimination and

register assignment

(i) x = a * b

...

(j) z = c + x

Instruction j uses value of x computed at i

x is live at i,

i.e., we need value of x later

• For each three-address statement x = y op z in block, record

next-uses of x, y, z

26



Determining Next-Use Information

For single basic block

• Assume all non-temporary variables are live on exit

(stored in symbol table)

• Make backward scan of instructions in block

• For each instruction i: x = y op z

1. Attach to i current next-use- and liveness information of

x, y, z

2. Set x to ‘not live’ and ‘no next use’

3. Set y and z to ‘live’

Set ‘next uses’ of y and z to i

27



8.8.2 Passing Liveness Information over
Blocks

Example of loop

❄

a = b + c

d = d - b

e = a + f

B1

�
�

�
��✠

❅
❅
❅❅❘

f = a - d B2

❅
❅
❅

❅❅❘

b = d + f

e = a - c
B3

�
�

��✠

❅
❅
❅❅❘

b = d + c B4

✬

✫

✲

❅
❅
❅❅❘

28



Passing Liveness Information over Blocks

Example of loop

❄

a = b + c

d = d - b

e = a + f

B1

�
�

�
��✠

❅
❅
❅❅❘

f = a - d B2

❅
❅
❅

❅❅❘

b = d + f

e = a - c
B3

�
�

��✠

❅
❅
❅❅❘

b = d + c B4

✬

✫

✲

❅
❅
❅❅❘

bcdf

acdef

acde

cdef

acdf

bcdef

b,d,e,f live

cdef

bcdef

b,c,d,e,f live

29



8.6 A Simple Code Generator

Use of registers

• Operands of operation must be in registers

• To hold values of temporary variables

• To hold (global) values that are used in several blocks

• To manage run-time stack

Assumption: subset of registers available for block

Machine instructions of form

• LD reg,mem

• ST mem, reg

• OP reg, reg, reg

30



8.6.1 Register and Address Descriptors

• Register descriptor keeps track of what is currently in register

– Example:

LD R, x → register R contains x

– Initially, all registers are empty

• Address descriptor keeps track of locations where current

value of a variable can be found

– Example:

LD R, x → x is (also) in R

– Information stored in symbol table

31



8.6.2 The Code-Generation Algorithm

For each three-address instruction x = y op z

1. Use getReg(x = y op z) to select registers Rx, Ry, Rz

2. If y is not in Ry, then issue instruction LD Ry, y
′,

where y′ is a memory location for y

(according to address descriptor)

3. If z is not in Rz, . . .

4. Issue instruction OP Rx, Ry, Rz

Special case: x = y . . .

At end of block: store all variables that are live-on-exit and not
in their memory locations (according to address descriptor)

32



Managing Register / Address Descriptors

1. For the instruction LD R, x, . . .

2. For the instruction ST x,R, . . .

3. For an operation like ADD Rx, Ry, Rz, implementing x = y+ z,

(c) Remove Rx from addr. descr. of other variables

(d) Remove x from reg. descr. of other registers

(a) Change reg. descr. for Rx: only x

(b) Change addr. descr. for x: only in Rx (not in x itself!)

4. For the copy statement x = y, . . .

33



Managing Register / Address Descriptors

Example: d = (a− b) + (a− c) + (a− c) a = . . .old value of d

t = a - b
LD R1, a
LD R2, b
SUB R2, R1, R2

u = a - c
LD R3, c
SUB R1, R1, R3

v = t + u
ADD R3, R2, R1

a = d
LD R2, d

d = v + u
ADD R1, R3, R1

exit
ST a, R2
ST d, R1

R1 R2 R3 a b c d t u v

a b c d

34



Managing Register / Address Descriptors

Example: d = (a− b) + (a− c) + (a− c) a = . . .old value of d

t = a - b
LD R1, a
LD R2, b
SUB R2, R1, R2

u = a - c
LD R3, c
SUB R1, R1, R3

v = t + u
ADD R3, R2, R1

a = d
LD R2, d

d = v + u
ADD R1, R3, R1

exit
ST a, R2
ST d, R1

R1 R2 R3

d a v

a b c d t u v

a,R2 b c d,R1 R3

35



8.6.3 Design of Function getReg

For each instruction x = y op z

• To compute Ry

1. If y is in register, −→ Ry

2. Else, if empty register available, −→ Ry

3. Else, select occupied register

For each register R and variable v in R

(a) If v is also somewhere else, then OK

(b) If v is x, and x is not z, then OK

(c) Else, if v is not used later, then OK

(d) Else, ST v,R is required

Take R with smallest number of stores

36



Design of Function getReg

For each instruction x = y op z

• To compute Rx, similar with few differences (which?)

For each instruction x = y, choose Rx = Ry

37



Exercise 1

38



Addressing Modes of Target Machine

Form Address Example

r r LD R1, R2

x x LD R1, x

a(r) a+ contents(r) LD R1, a(R2)
c(r) c+ contents(r) LD R1, 100(R2)
∗r contents(r) LD R1, ∗R2
∗c(r) contents(c+ contents(r)) LD R1, ∗100(R2)
#c LD R1,#100

39



8.8 Register Allocation and Assignment

So far, live variables in registers are stored at end of block

Use of registers

• Operands of operation must be in registers

• To hold values of temporary variables

• To hold (global) values that are used in several blocks

• To manage run-time stack

40



8.8.2 Usage counts

With x in register during loop L

• Save . . . for . . . use of x that is not preceded by assignment

in same block

• Save . . . for each block, where x is assigned a value and x is

live on exit

•

Total savings ≈
∑

blocks B∈L

. . .

Choose variables x with largest savings

41



Usage counts

With x in register during loop L

• Save 1 for each use of x that is not preceded by assignment

in same block

• Save 2 for each block, where x is assigned a value and x is

live on exit

•

Total savings ≈
∑

blocks B∈L

use(x,B) + 2 ∗ live(x,B)

Choose variables x with largest savings

42



Usage counts (Example)

❄

a = b + c

d = d - b

e = a + f

B1

�
�

�
��✠

❅
❅
❅❅❘

f = a - d B2

❅
❅
❅

❅❅❘

b = d + f

e = a - c
B3

�
�

��✠

❅
❅
❅❅❘

b = d + c B4

✬

✫

✲

❅
❅
❅❅❘

bcdf

acdef

acde

cdef

acdf

bcdef

b,d,e,f live

cdef

bcdef

b,c,d,e,f live

Savings for a are 1 + 1+ 1 ∗ 2 = 4

43



Compiler constructie

college 7

Storage Organization

Code Generation

Chapters for reading:

7.1, 7.2–7.2.3

8.intro, 8.1, 8.2, 8.4, 8.6, 8.8–8.8.2

44


