Compilerconstructie

najaar 2013

http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet kamer 124 Snellius, tel. 071-5 rvvliet(at)liacs(dot)nl 071-527 5777

college 9, dinsdag 26 november 2013

Code Optimization

• Optimizations depend on data-flow analysis, e.g.,

9.2 Introduction to Data-Flow Analysis

Global common subexpression elimination

Dead-code elimination

• Execution path yields program state

Extract information from program state for data-flow analy-

Different analyses extract different information

Usually infinite number of execution paths / program states

Ν

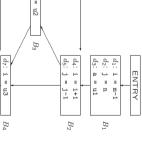
Data-Flow Analysis (Examples)

Extract information from program states at program point

- ullet Reaching definitions: which definitions (assignments of values) of variable a reach program point? Useful for debugging
- point? Can variable \boldsymbol{x} only have one constant value at program Useful for constant folding

ω

Computing Reaching Definitions



Reaching definitions

• Before B_1 : \emptyset • After B_1 : $\{d_1, d_2, d_3\}$ • Before B_2 : . . .

B_4

Data Flow Values

ullet IN[s]: before statement s

 $\mathsf{OUT}[s]$: after statement s

Transfer function f_s

forward: $OUT[s] = f_s(IN[s])$

- backward: $IN[s] = f_s(OUT[s])$

Computing Reaching Definitions

Effect of single definition d: u = v op w:

 $\mathsf{OUT}[d] = \{d\} \cup (\mathsf{IN}[d] - \ldots)$

Computing Reaching Definitions

Effect of single definition $d: u = v \ op \ w$:

 $\mathsf{OUT}[d] = \{d\} \cup (\mathsf{IN}[d] - \{\mathsf{all other definitions of } u \mathsf{ in program}\})$

Hence

where $f_d(x)$ $\{d\} \cup (x - \{\text{all other definitions of } u$ $\text{$\operatorname{gen}_d \cup (x - k \operatorname{\it{ill}}_d)$}$ in program})

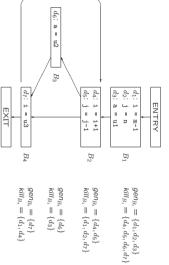
 $gen_d = kill_d =$ $kill_d$ $\{ \hbox{all other definitions of } u \hbox{ in program} \}$

Computing Reaching Definitions

Effect of block B, with definitions $1, 2, \ldots, n$:

 $gen_B =$ $kill_B =$ $gen_n \cup (gen_{n-1} - kill_n) \cup (gen_{n-2} - kill_{n-1} - kill_n) \dots$ $kill_1 \cup kill_2 \cup \dots \cup kill_n$ $\{n,n-1,\ldots,1\}-\{\text{ definitions killed afterwards }\}$

Computing Reaching Definitions



Iterative Algorithm for Computing Reaching Definitions

```
 \begin{array}{ll} {\rm OUT[ENTRY]} = \emptyset \\ {\bf for} \ {\rm each} \ {\rm basic} \ {\rm block} \ B \ {\rm other} \ {\rm than} \ {\rm ENTRY} \\ {\rm OUT}[B] = \emptyset \end{array}
```

while (changes to any OUT occur) for each basic block B other than ENTRY $\{ IN[B] = \cup_{predecessors\ P} \ of\ BOUT[P] \}$

 $\mathsf{OUT}[B] = gen_B \cup (\mathsf{IN}[B] - kill_B)$

Typical form of algorithm for forward data-flow analysis

Example with $B=B_1,B_2,B_3,B_4,\mathsf{EXIT}\dots$

10

Implementation of Iterative Algorithm for Computing Reaching Definitions

_		B_3	_		Block B
		0000 0000			$OUT[B]^0$
0000	1110	001 1100	0000	0000	$ IN[B]^1 $
001 0111	001 0111	000 1110	001 1100	111 0000	$OUT[B]^1$
001 0111	001 1110	001 1110	111 0111	0000 0000	$IN[B]^2$
001 0111	001 0111	000 1110	001 1110	111 0000	OUT $[B]^2$

11

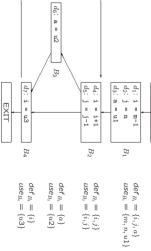
With bit vectors

Block B	$\ \operatorname{OUT}[B]^0 \ \operatorname{IN}[B]^1 \operatorname{OUT}[B]^1 \operatorname{IN}[B]^2 \operatorname{OUT}[B]^2$	$ IN[B]^1$	$OUT[B]^1$	$IN[B]^2$	$OUT[B]^2$
	0000 0000	0000 0000	111 0000	0000 0000	111 0000
	0000 0000	111 0000	001 1100	111 0111	001 1110
B_3	0000 0000	001 1100	000 1110	001 1110	000 1110
	0000 0000	001 1110	001 0111	001 1110	001 0111
·			001 0111	001 0111	001 0111

Live-Variable Analysis

- Variable x is live at program point p, if value of x at p could be used later along $some\ path$
- Otherwise x is dead at p
- Information useful for register allocation (see college 7)
- Information about later use must be propagated backwards

Computing Liveness



 $def_{B_i} = \{i\}$ $use_{B_i} = \{u3\}$

14

Effect of block ${\cal B}$ on live variables Live-Variable Analysis

- def_B : variables $\operatorname{defined}$ in B
- $\mathit{use}_B \colon \mathsf{variables}$ that may be used in B prior to any definition in B

13

Iterative Algorithm for Computing Liveness

```
\begin{split} &\text{IN}[\text{EXIT}] = \emptyset \\ &\text{for each basic block } B \text{ other than EXIT} \\ &\text{IN}[B] = \emptyset \end{split}
IN[B] = use_B \cup (OUT[B] - def_B)
```

Typical form of algorithm for backward data-flow analysis

Available expressions

- Is (value of) expression $x\ op\ y$ available?
- Useful for global common subexpression elimination
- Can be decided with data-flow analysis

16

Available Expressions (Example)

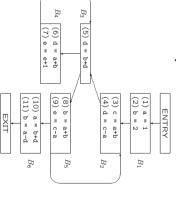
Statement Available Expressions a = b + c

Computing Available Expressions (Example)

17

18

Flow Graph For Data Flow Analysis



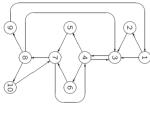
Computing Available Expressions

```
OUT[ENTRY] = \emptyset for each basic block B other than ENTRY OUT[B] = U while (changes to any OUT occur) for each basic block B other than ENTRY \{ N[B] = \bigcap_{P \in A} P[B] =
```

19

20

Efficient Iterative Data-Flow Analysis



Order of blocks in second for-loop matters

21

22

Efficient Iterative Data-Flow Analysis

Order of blocks in second for-loop matters

9.6 Loops in Flow Graphs

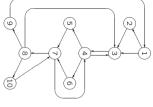
- Optimizations of loops have significant impact
- Essential to identify loops
- Used in region based analysis (not for exam)

Dominators

- Dominators:
- Node d dominates node n if every path from ENTRY node to n goes through $d\colon d$ dom n
- Node n dominates itself
- Loop entry dominates all nodes in loop
- • Immediate dominator m of n: last dominator on (any) path from ENTRY node to n
- if $d \neq n$ and d dom n, then d dom m

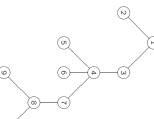
23

Dominators (Example)



25

Dominator Trees (Example)



Finding Dominators

Forward data-flow analysis

 ${\cal N}$ is set of all nodes

OUT[ENTRY] = {ENTRY} for each node n other than ENTRY OUT[n] = N

while (changes to any OUT occur) for each node n other than ENTRY $\{ IN[n] = \bigcap_{predecessors m} of {}_{n}OUT[m] \}$ $\mathsf{OUT}[n] = \mathsf{IN}[n] \cup \{n\}$

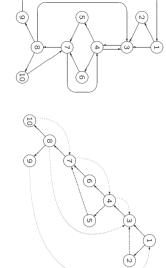
27

Depth-First Traversal

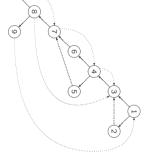
- Depth-first traversal of graph
- Start from entry node
- Recursively visit neighbours (in any order)
- Hence, visit nodes far away from the entry node as quickly as it can (DF) $\,$

28

Depth-First Spanning Tree



D **Depth-First Spanning** Tree



- Advancing edgesRetreating edgesCross edges
- Back edge a → b,
 if b dominates a
 (regardless of DFST)
- Each back edge is retreating edge in DFST
 Flow graph is reducible, if each retreating edge in any DFST is back edge

(Non)Reducible flow graphs

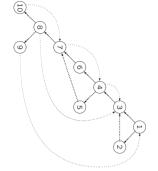
- In practice, almost every flow graph is reducible
- Example of nonreducible flow graph (with advancing edges)
- To decide on reducibility:
- Remove back edges
- 2. Is remaining graph acyclic?

Natural loops

- If loop has single-entry node, then compiler can assume certain initial conditions $% \left(1\right) =\left(1\right) +\left(1\right)$
- Natural loop
- 1. Has single-entry node: header
- 2. Has back edge to header
- \bullet Each back edge $n \to d$ determines natural loop, consisting of
- all nodes that can reach \boldsymbol{n} without going through \boldsymbol{d}
- Constructing natural loop of back edge.

31

Natural Loops (Example)



33

34

No Natural Loops

Natural Loops

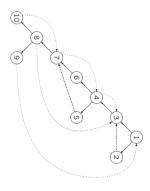
- Useful property: unless two natural loops have same header
- either they are disjoint
- or one is nested within other

Allows for inside-out optimization

header... Assumption: if necessary, combine natural loops with same

35

A Depth-First Ordering



- nodes in DFST in WRL order pproxDepth-First Ordering: reverse of postorder
- Example: 1,2,3,4,5,6,7,8,9,10
- Edge $m \to n$ is retreating, if and only if n comes before m in depth-first ordering

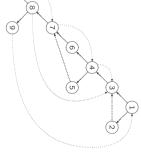
36

Depth of Flow Graph

- Depth of DFST is largest number of retreating edges on any cycle-free path
- If flow graph is reducible, then depth is independent of DFST: depth of flow graph $\,$
- ullet Depth \leq depth of loop nesting in flow graph

Depth of Flow Graph (Example)

Depth is 3, because of path $10 \rightarrow 7 \rightarrow 4 \rightarrow 3$



Speed of Convergence of Iterative Data-Flow Algorithms

- Yes for
- Reaching definitions
- Live-variable analysis
- Available expressions
- No for
- Copy propagation

If yes, then fast convergence possible

39

Efficient Iterative Data-Flow Analysis

Example: computing reaching definitions

 $\begin{array}{ll} {\rm OUT}[{\rm ENTRY}] = \emptyset \\ {\bf for} \ {\rm each} \ {\rm basic} \ {\rm block} \ B \ {\rm other} \ {\rm than} \ {\rm ENTRY} \\ {\rm OUT}[B] = \emptyset \\ \end{array}$

while (changes to any OUT occur) for each basic block B other than ENTRY $\{ IN[B] = \cup_{predecessors P \text{ of } B} OUT[P] \}$

 $\mathsf{OUT}[B] = \mathit{gen}_B \cup (\mathsf{IN}[B] - \mathit{kill}_B)$

Order of blocks in second for-loop matters

Fast Convergence

- Forward data-flow problem: visit nodes in depth-first-order
- \bullet Recall: edge $m \to n$ is retreating, if and only if n comes before m in depth-first ordering
- ullet Example: path of propagation of definition d:

$$3 \rightarrow 5 \rightarrow 19 \rightarrow 35 \rightarrow 16 \rightarrow 23 \rightarrow 45 \rightarrow 4 \rightarrow 10 \rightarrow 17$$

- ullet Number of iterations: $1+ {
 m depth} \ (+\ 1)$
- Typical flow graphs have depth 2.75
- \bullet Backward data-flow problem: visit nodes in reverse of depth-first-order

41

En verder...

- Dinsdag 3 december: practicum over opdracht 4
- Maandag 9 december: inleveren opdracht 4
- Dinsdag 17 december, 10:00–13:00: tentamen
- Vragenuur ?

42

Compiler constructie

college 9 Code Optimization

Chapters for reading: 9.2, 9.6