Compilerconstructie
najaar 2013
http://www.liacs.nl/home/rvvliet/coco/
Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl

college 9, dinsdag 26 november 2013

Code Optimization

Data-Flow Analysis (Examples)

Extract information from program states at program point

e Reaching definitions: which definitions (assignments of val-
ues) of variable a reach program point?
Useful for debugging

e Can variable z only have one constant value at program
point?
Useful for constant folding

Data Flow Values
e IN[s]: before statement s
e OUT](s]: after statement s

e Transfer function fs
— forward: OUT[s] = fs(IN[s])

— backward: IN[s] = fs(OUT[s])

Computing Reaching Definitions

Effect of single definition d : u =v op w:

e OUTI[d] = {d}U(IN[d]—{all other definitions of w in program})

e Hence,
fa(z) = {d} U (z — {all other definitions of w in program})
= genyU (z — Killg)
where
gen; = {d}

kill; = {all other definitions of w in program}

9.2 Introduction to Data-Flow Analysis

Optimizations depend on data-flow analysis, e.g.,
— Global common subexpression elimination

— Dead-code elimination

Execution path yields program state

e Extract information from program state for data-flow analy-
sis

Usually infinite number of execution paths / program states

Different analyses extract different information

Computing Reaching Definitions

[ENTRY | Reaching definitions

e Before By: 0
PRl o After By: {d1,d3, d3}
SRS Before By:
dsta - ut e Before Bs:

dg: i o= i+l
ds: j

Computing Reaching Definitions

e Effect of single definition d : v =wv op w:

— OUTI[d] = {d} U(N[d] —...)

Computing Reaching Definitions

Effect of block B, with definitions 1,2,...,n:

geng = {n,n—1,...,1} — { definitions killed afterwards }
= geny U (gen,_1 — Killp) U (gen, o — Kill,_1 — Killp) ...
Killg = Killy UKillaU . ..U Killy,

Computing Reaching Definitions

ENTRY

di: i =m-1 genp, = {d1,d>,ds}
d» j =n By Killp, = {da, ds, de, d7}
dz: a = ul
dat 1= i+l genp, = {da,ds}

By

ds: j Killg, = {d1,do, d7}

genp, = {de}
Killp, = {ds}

genp, = {dr}
Killp, = {d1,da}

Implementation of Iterative Algorithm
for Computing Reaching Definitions

With bit vectors

Block B || ouT[B]° | IN[B]* | ouT[B]* | IN[B]* | OUT[B]?
B 000 0000 || 000 0000 | 111 0000 | 000 0000 | 111 0000
B, 000 0000 | 111 0000 | 001 1100 | 111 0111 | 001 1110
Bs 000 0000 | 001 1100 | 000 1110 | 001 1110 | 000 1110
Ba 000 0000 | 001 1110 | 001 0111 | 001 1110 | 001 0111

EXIT 000 0000 || 000 0000 | 001 0111 | 001 0111 | 001 0111

Live-Variable Analysis

Effect of block B on live variables
e defp: variables defined in B

e usep: variables that may be used in B prior to any definition
in B

Iterative Algorithm
for Computing Liveness

IN[EXIT] =0
for each basic block B other than EXIT
IN[B] =0

while (changes to any IN occur)
for each basic block B other than EXIT
{ OUTIB] = Usyccessors s of sINIS]

IN[B] = usep U (OUT[B] — def)

Typical form of algorithm for backward data-flow analysis

Iterative Algorithm
for Computing Reaching Definitions

OUT[ENTRY] =0
for each basic block B other than ENTRY
OUTI[B] =10

while (changes to any OUT occur)
for each basic block B other than ENTRY

{IN[B] = Upredecessors r of sOUTI[P]

OUTI(B] = genp U (IN[B] — Kill)

Typical form of algorithm for forward data-flow analysis

Example with B = By, By, B3, B4, EXIT. ..

10

Live-Variable Analysis

e Variable z is live at program point p,
if value of = at p could be used later along some path

e Otherwise z is dead at p
e Information useful for register allocation (see college 7)

e Information about later use must be propagated backwards

12

Computing Liveness

ENTRY

di: i = m-1 def g,

dx: j =n B1 usep,

dz: a = ul

dat i = i+l defp, = {i,j}

ds: j usep, = {i,j}

def 5, = {a}
usep, = {u2}

defp, = {i}
usep, = {u3}

14

Available expressions

e Is (value of) expression z op y available?

e Useful for global common subexpression elimination

e Can be decided with data-flow analysis

16

Computing Available Expressions

(Example)
Statement | Available Expressions
0
- - a=b+c
Available Expressions (Example) (b+e)
b=a-4d
{a—d}
c=b+c
{a—d}
d=a-d
0
17 18

Flow Graph For Data Flow Analysis
[ENTRY |

Computing Available Expressions

OUTI[ENTRY] =0
for each basic block B other than ENTRY
OUT[B]=U

while (changes to any OUT occur)
for each basic block B other than ENTRY
{ IN[B] = Npredecessors r of sFOUTIP]

(5) d = b+d

(6) d = a+b

OUT([B] = e_genp U (IN[B] — e_killz) ot
7) e = e+l

Bg

Efficient Iterative Data-Flow Analysis

Efficient Iterative Data-Flow Analysis

Example: computing reaching definitions

OUT[ENTRY] =90

for each basic block B other than ENTRY
OUT([B] =0

while (changes to any OUT occur)
for each basic block B other than ENTRY
{ IN[B]= Upredecessors ¢ of sOUT[P]

OUTI(B] = genp U (IN[B] — Kill5)

Order of blocks in second for-loop matters

Order of blocks in second for-loop matters
21 22

Dominators

9.6 Loops in Flow Graphs e Dominators:

— Node d dominates node n if every path from ENTRY node

e Optimizations of loops have significant impact to n goes through d: d dom n
— Node n dominates itself

¢ Essential to identify loops — Loop entry dominates all nodes in loop

e Used in region based analysis (not for exam) e Immediate dominator m of n:
last dominator on (any) path from ENTRY node to n
— if d#n and d dom n, then d dom m

23 24

Dominators (Example) Dominator Trees (Example)

25

Finding Dominators

Depth-First Traversal

Forward data-flow analysis

N is set of all nodes e Depth-first traversal of graph

OUTI[ENTRY] = {ENTRY} — Start from entry node

for each node n other than ENTRY
OUT[n] =N — Recursively visit neighbours (in any order)

while (changes to any OUT occur, . .
ﬂoqﬁmmns@:oam n o<§2 than mzvjy< — Hence, visit nodes far away from the entry node as quickly
{ IN[n] = Npredecessors m of ,OUT[m] as it can (DF)

OUT[n] =IN[n] U {n}

27 28

A Depth-First Spanning Tree

A Depth-First Spanning Tree

Advancing edges

Retreating edges

Cross edges

Back edge a — b,

if b dominates a

(regardless of DFST)

e Each back edge is
retreating edge in DFST

e Flow graph is reducible,

if each retreating edge in

any DFST is back edge

29 30

(Non)Reducible flow graphs Natural loops
e If loop has single-entry node, then compiler can assume cer-

. . . tain initial conditions
e In practice, almost every flow graph is reducible

Natural loop

e Example of nonreducible flow graph 1. Has single-entry node: header
(with advancing edges) 2. Has back edge to header

e Each back edge n — d determines natural loop, consisting of
—d

1. Remove back edges — all nodes that can reach n without going through d

e To decide on reducibility:

2. Is remaining graph acyclic?

Constructing natural loop of back edge. ..

31 32

Natural Loops (Example)

33

Natural Loops

e Useful property: unless two natural loops have same header
— either they are disjoint
— or one is nested within other
Allows for inside-out optimization

e Assumption: if necessary, combine natural loops with same
header. ..

35

Depth of Flow Graph

e Depth of DFST is largest number of retreating edges on any
cycle-free path

e If flow graph is reducible, then depth is independent of DFST:
depth of flow graph

e Depth < depth of loop nesting in flow graph

37

m_mmoa of Convergence]
of Iterative Data-Flow Algorithms

In data-flow analysis, can significant events be propagated to
node along acyclic path?
e Yes for
— Reaching definitions
— Live-variable analysis
— Available expressions

e No for
— Copy propagation

If yes, then fast convergence possible
39

No Natural Loops

34

A Depth-First Ordering

e Depth-First Ordering:
nodes in DFST
in WRL order ~
reverse of postorder

e Example:
1,2,3,4,5,6,7,8,9,10

e Edge m — n is
retreating, if and only if
n comes before m
in depth-first ordering

36

Depth of Flow Graph (Example)

Depth is 3, because of path
10-7—-4—-3

38

Efficient Iterative Data-Flow Analysis

Example: computing reaching definitions

OUTI[ENTRY] =0

for each basic block B other than ENTRY
OUT[B] =0

while (changes to any OUT occur)
for each basic block B other than ENTRY
{ IN[BI = Upredecessors r of s5OUTIF]

OUTI[B] = geng U (IN[B] — Killg)

Order of blocks in second for-loop matters

40

Fast Convergence

Forward data-flow problem: visit nodes in depth-first-order

Recall: edge m — n is retreating, if and only if n comes
before m in depth-first ordering

Example: path of propagation of definition d:
3+5—-+19—-35—+16 23 —+45—+4—- 10— 17

Number of iterations: 14 depth (+ 1)
Typical flow graphs have depth 2.75

Backward data-flow problem: visit nodes in reverse of depth-
first-order

41

Compiler constructie

college 9
Code Optimization

Chapters for reading:
9.2, 9.6

43

En verder. ..

e Dinsdag 3 december: practicum over opdracht 4

e Maandag 9 december: inleveren opdracht 4

e Dinsdag 17 december, 10:00—-13:00: tentamen

e Vragenuur 7

42

