Compilerconstructie

najaar 2013

http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 9, dinsdag 26 november 2013

Code Optimization

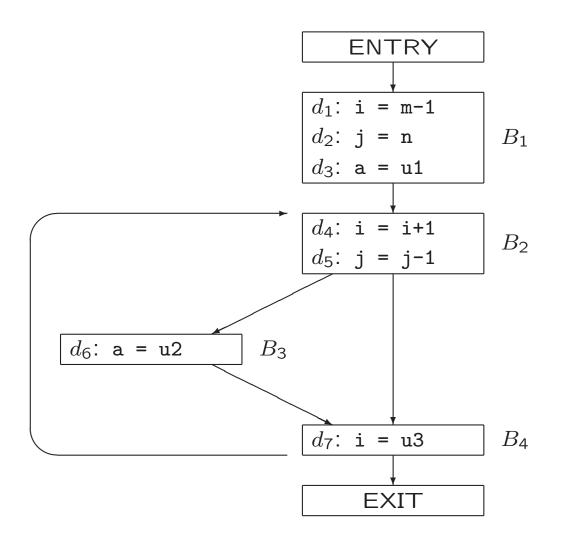
9.2 Introduction to Data-Flow Analysis

- Optimizations depend on data-flow analysis, e.g.,
 - Global common subexpression elimination
 - Dead-code elimination
- Execution path yields program state
- Extract information from program state for data-flow analysis
- Usually infinite number of execution paths / program states
- Different analyses extract different information

Data-Flow Analysis (Examples)

Extract information from program states at program point

- Reaching definitions: which definitions (assignments of values) of variable a reach program point?
 Useful for debugging
- ullet Can variable x only have one constant value at program point?
 - Useful for constant folding



Reaching definitions

- Before B_1 : \emptyset
- After B_1 : $\{d_1, d_2, d_3\}$
- Before B_2 : ...

Data Flow Values

- IN[s]: before statement s
- OUT[s]: after statement s
- ullet Transfer function f_s
 - forward: $OUT[s] = f_s(IN[s])$
 - backward: $IN[s] = f_s(OUT[s])$

- Effect of single definition d: u = v op w:
 - $\mathsf{OUT}[d] = \{d\} \cup (\mathsf{IN}[d] \ldots)$

Effect of single definition $d: u = v \ op \ w$:

- $OUT[d] = \{d\} \cup (IN[d] \{all other definitions of u in program\})$
- Hence,

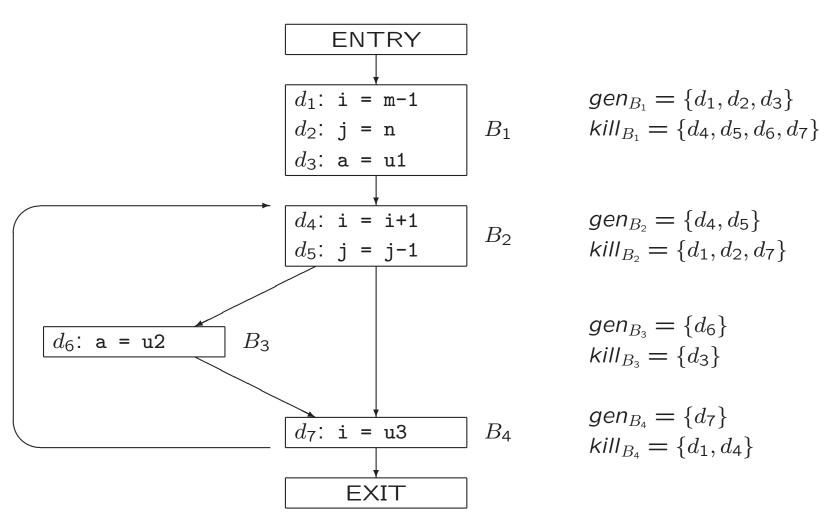
```
f_d(x) = \{d\} \cup (x - \{\text{all other definitions of } u \text{ in program}\})
= gen_d \cup (x - kill_d)
```

where

```
gen_d = \{d\}
kill_d = \{all other definitions of <math>u in program\}
```

Effect of block B, with definitions $1, 2, \ldots, n$:

```
gen_B = \{n, n-1, \ldots, 1\} - \{ \text{ definitions killed afterwards } \}
= gen_n \cup (gen_{n-1} - kill_n) \cup (gen_{n-2} - kill_{n-1} - kill_n) \ldots
kill_B = kill_1 \cup kill_2 \cup \ldots \cup kill_n
```



Iterative Algorithm for Computing Reaching Definitions

```
OUT[ENTRY] = \emptyset

for each basic block B other than ENTRY
OUT[B] = \emptyset

while (changes to any OUT occur)

for each basic block B other than ENTRY

\{IN[B] = \bigcup_{predecessors\ P\ of\ B} OUT[P]

OUT[B] = gen_B \cup (IN[B] - kill_B)
\}
```

Typical form of algorithm for forward data-flow analysis

Example with $B = B_1, B_2, B_3, B_4, \mathsf{EXIT}...$

Implementation of Iterative Algorithm for Computing Reaching Definitions

With bit vectors

	$\mid OUT[B]^0 \mid$				
B_1	000 0000	000 0000	111 0000	000 0000	111 0000
B_2	000 0000	111 0000	001 1100	111 0111	001 1110
B_3	000 0000	001 1100	000 1110	001 1110	000 1110
B_4	000 0000	001 1110	001 0111	001 1110	001 0111
EXIT	000 0000	000 0000	001 0111	001 0111	001 0111

Live-Variable Analysis

- Variable x is live at program point p,
 if value of x at p could be used later along some path
- Otherwise x is dead at p
- Information useful for register allocation (see college 7)
- Information about later use must be propagated backwards

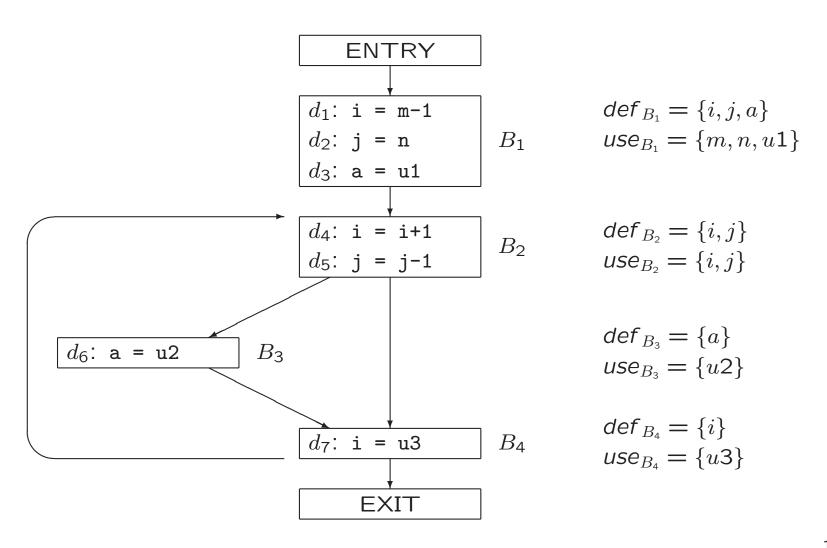
Live-Variable Analysis

Effect of block B on live variables

 \bullet *def* $_B$: variables *defined* in B

ullet use_B : variables that may be used in B prior to any definition in B

Computing Liveness



Iterative Algorithm for Computing Liveness

```
\begin{split} \text{IN}[\mathsf{EXIT}] &= \emptyset \\ \text{for each basic block } B \text{ other than EXIT} \\ \text{IN}[B] &= \emptyset \end{split}  \begin{aligned} \text{while (changes to any IN occur)} \\ \text{for each basic block } B \text{ other than EXIT} \\ \{ &\quad \mathsf{OUT}[B] = \cup_{\mathsf{Successors } S \text{ of } B} \mathsf{IN}[S] \\ \text{IN}[B] &= use_B \cup (\mathsf{OUT}[B] - def_B) \\ \} \end{aligned}
```

Typical form of algorithm for backward data-flow analysis

Available expressions

- Is (value of) expression x op y available?
- Useful for global common subexpression elimination
- Can be decided with data-flow analysis

Available Expressions (Example)

Computing Available Expressions (Example)

Statement	Available Expressions
	Ø
a = b + c	
	$\{b+c\}$
b = a - d	
	$\{a-d\}$
c = b + c	
	$\{a-d\}$
d = a - d	
	\emptyset
c = b + c	

Computing Available Expressions

```
OUT[ENTRY] = \emptyset

for each basic block B other than ENTRY
OUT[B] = U

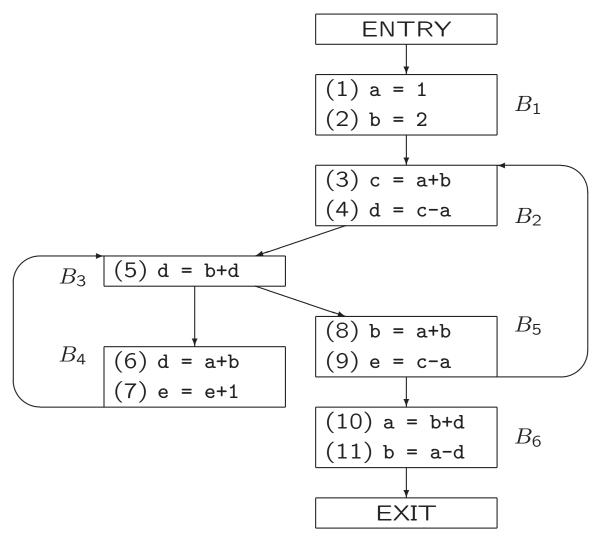
while (changes to any OUT occur)

for each basic block B other than ENTRY

\{ IN[B] = \bigcap_{predecessors P \text{ of } B} OUT[P] \}

OUT[B] = e_{-}gen_{B} \cup (IN[B] - e_{-}kill_{B})
\{ IN[B] = e_{-}gen_{B} \cup (IN[B] - e_{-}kill_{B}) \}
```

Flow Graph For Data Flow Analysis



Efficient Iterative Data-Flow Analysis

Example: computing reaching definitions

```
OUT[ENTRY] = \emptyset

for each basic block B other than ENTRY

OUT[B] = \emptyset

while (changes to any OUT occur)

for each basic block B other than ENTRY

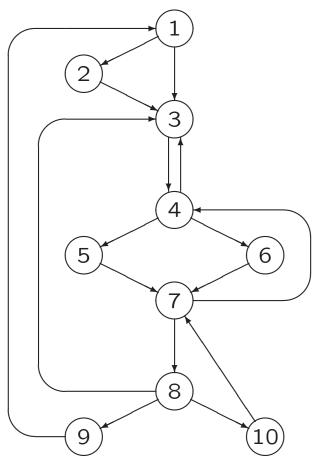
\{IN[B] = \bigcup_{predecessors\ P\ of\ B} OUT[P]

OUT[B] = gen_B \cup (IN[B] - kill_B)

\}
```

Order of blocks in second for-loop matters

Efficient Iterative Data-Flow Analysis



Order of blocks in second for-loop matters

9.6 Loops in Flow Graphs

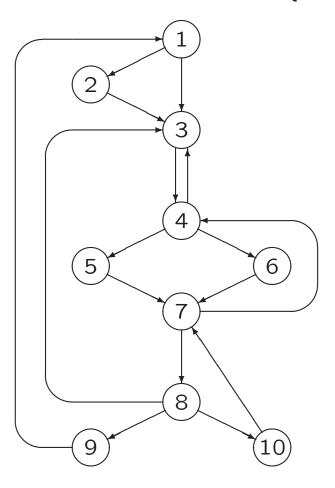
- Optimizations of loops have significant impact
- Essential to identify loops
- Used in region based analysis (not for exam)

Dominators

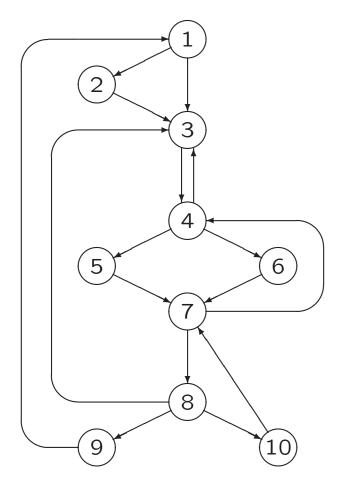
Dominators:

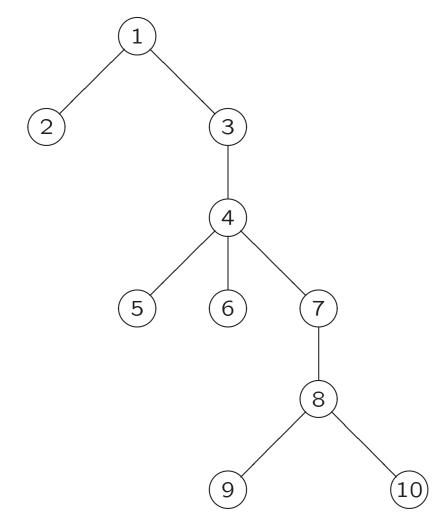
- Node d dominates node n if every path from ENTRY node to n goes through d: d dom n
- Node n dominates itself
- Loop entry dominates all nodes in loop
- Immediate dominator m of n: last dominator on (any) path from ENTRY node to n
 - if $d \neq n$ and d dom n, then d dom m

Dominators (Example)



Dominator Trees (Example)





Finding Dominators

Forward data-flow analysis

N is set of all nodes

```
OUT[ENTRY] = {ENTRY}

for each node n other than ENTRY

OUT[n] = N

while (changes to any OUT occur)

for each node n other than ENTRY

{ IN[n] = \cap_{\text{predecessors } m \text{ of } n} \text{OUT}[m]

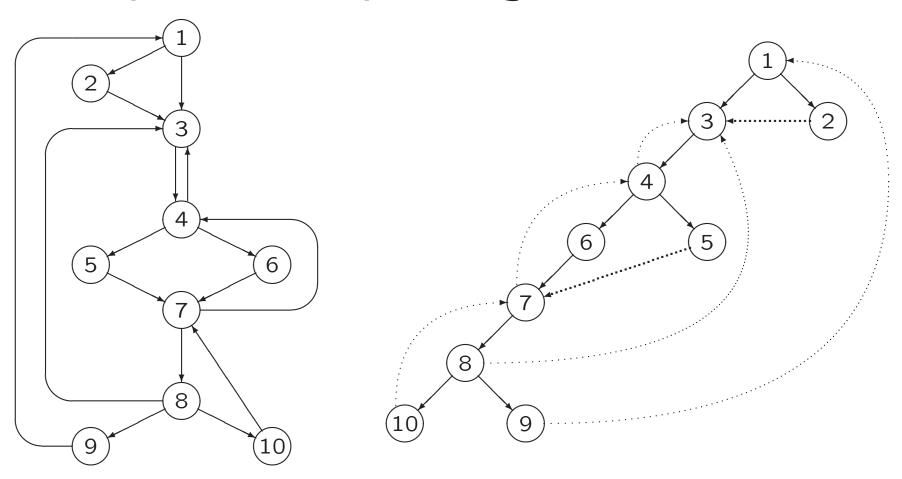
OUT[n] = IN[n] \cup \{n\}

}
```

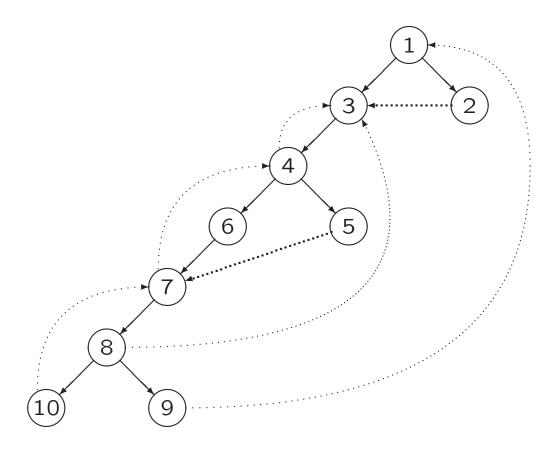
Depth-First Traversal

- Depth-first traversal of graph
 - Start from entry node
 - Recursively visit neighbours (in any order)
 - Hence, visit nodes far away from the entry node as quickly as it can (DF)

A Depth-First Spanning Tree



A Depth-First Spanning Tree



- Advancing edges
- Retreating edges
- Cross edges
- Back edge $a \rightarrow b$, if b dominates a(regardless of DFST)
- Each back edge is retreating edge in DFST
- Flow graph is reducible, if each retreating edge in any DFST is back edge

(Non)Reducible flow graphs

- In practice, almost every flow graph is reducible
- Example of nonreducible flow graph (with advancing edges)
- To decide on reducibility:
 - 1. Remove back edges
 - 2. Is remaining graph acyclic?

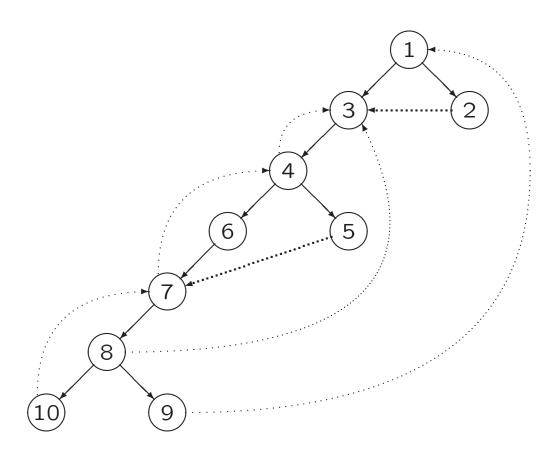
Natural loops

If loop has single-entry node, then compiler can assume certain initial conditions

Natural loop

- 1. Has single-entry node: header
- 2. Has back edge to header
- ullet Each back edge $n \to d$ determines natural loop, consisting of
 - -d
 - all nodes that can reach n without going through d
- Constructing natural loop of back edge. . .

Natural Loops (Example)



No Natural Loops

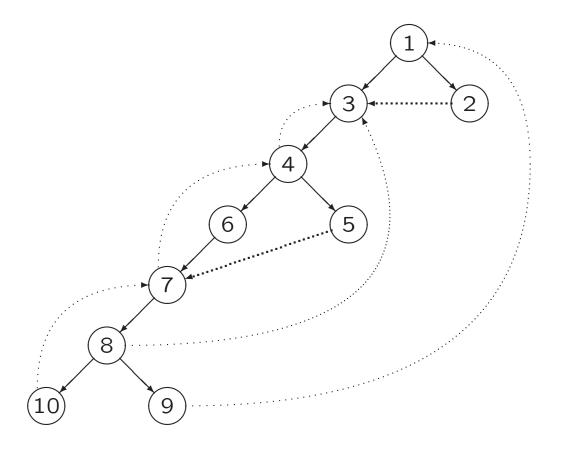
Natural Loops

- Useful property: unless two natural loops have same header
 - either they are disjoint
 - or one is nested within other

Allows for inside-out optimization

 Assumption: if necessary, combine natural loops with same header...

A Depth-First Ordering

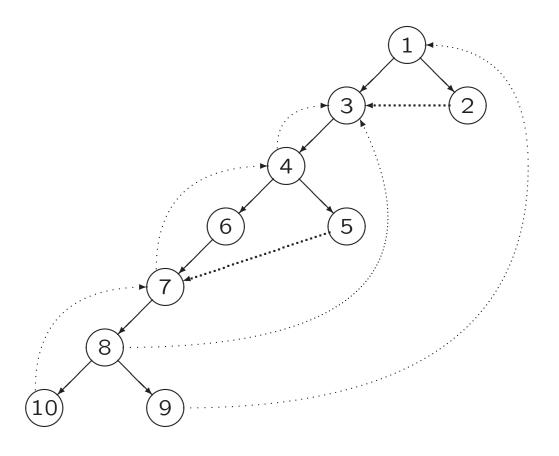


- Depth-First Ordering: nodes in DFST in WRL order ≈ reverse of postorder
- Example:1,2,3,4,5,6,7,8,9,10
- Edge $m \to n$ is retreating, if and only if n comes before m in depth-first ordering

Depth of Flow Graph

- Depth of DFST is largest number of retreating edges on any cycle-free path
- If flow graph is reducible, then depth is independent of DFST:
 depth of flow graph
- Depth < depth of loop nesting in flow graph

Depth of Flow Graph (Example)



Depth is 3, because of path $10 \rightarrow 7 \rightarrow 4 \rightarrow 3$

Speed of Convergence of Iterative Data-Flow Algorithms

In data-flow analysis, can significant events be propagated to node along acyclic path?

- Yes for
 - Reaching definitions
 - Live-variable analysis
 - Available expressions
- No for
 - Copy propagation

If yes, then fast convergence possible

Efficient Iterative Data-Flow Analysis

Example: computing reaching definitions

```
OUT[ENTRY] = \emptyset

for each basic block B other than ENTRY

OUT[B] = \emptyset

while (changes to any OUT occur)

for each basic block B other than ENTRY

\{IN[B] = \bigcup_{predecessors\ P\ of\ B} OUT[P]

OUT[B] = gen_B \cup (IN[B] - kill_B)

\}
```

Order of blocks in second for-loop matters

Fast Convergence

- Forward data-flow problem: visit nodes in depth-first-order
- ullet Recall: edge $m \to n$ is retreating, if and only if n comes before m in depth-first ordering
- \bullet Example: path of propagation of definition d:

$$3 \rightarrow 5 \rightarrow 19 \rightarrow 35 \rightarrow 16 \rightarrow 23 \rightarrow 45 \rightarrow 4 \rightarrow 10 \rightarrow 17$$

- Number of iterations: 1 + depth (+ 1)
- Typical flow graphs have depth 2.75
- Backward data-flow problem: visit nodes in reverse of depthfirst-order

En verder...

- Dinsdag 3 december: practicum over opdracht 4
- Maandag 9 december: inleveren opdracht 4
- Dinsdag 17 december, 10:00–13:00: tentamen
- Vragenuur ?

Compiler constructie

college 9 Code Optimization

Chapters for reading: 9.2, 9.6