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8.6 A Simple Code Generator

Use of registers

• Operands of operation must be in registers

• To hold values of temporary variables

• To hold (global) values that are used in several blocks

• To manage run-time stack

Assumption: subset of registers available for block

Machine instructions of form

• LD reg,mem

• ST mem, reg

• OP reg, reg, reg
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Register and Address Descriptors

• Register descriptor keeps track of what is currently in register

– Example:

LD R, x → register R contains x

– Initially, all registers are empty

• Address descriptor keeps track of locations where current

value of a variable can be found

– Example:

LD R, x → x is (also) in R

– Information stored in symbol table

3



The Code-Generation Algorithm

For each three-address instruction x = y op z

1. Use getReg(x = y op z) to select registers Rx, Ry, Rz

2. If y is not in Ry, then issue instruction LD Ry, y′,
where y′ is a memory location for y
(according to address descriptor)

3. If z is not in Rz, . . .

4. Issue instruction OP Rx, Ry, Rz

Special case: x = y . . .

At end of block: store all variables that are live-on-exit and not
in their memory locations (according to address descriptor)
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Managing Register / Address Descriptors

1. For the instruction LD R, x, . . .

2. For the instruction ST x,R, . . .

3. For an operation like ADD Rx, Ry, Rz, implementing x = y+ z,

(c) Remove Rx from addr. descr. of other variables

(d) Remove x from reg. descr. of other registers

(a) Change reg. descr. for Rx: only x

(b) Change addr. descr. for x: only in Rx (not in x itself!)

4. For the copy statement x = y, . . .
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Managing Register / Address Descriptors

Example: d = (a− b) + (a− c) + (a− c) a = . . .old value of d

t = a - b
LD R1, a
LD R2, b
SUB R2, R1, R2

u = a - c
LD R3, c
SUB R1, R1, R3

v = t + u
ADD R3, R2, R1

a = d
LD R2, d

d = v + u
ADD R1, R3, R1

exit
ST a, R2
ST d, R1

R1 R2 R3 a b c d t u v

a b c d
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Managing Register / Address Descriptors

Example: d = (a− b) + (a− c) + (a− c) a = . . .old value of d

t = a - b
LD R1, a
LD R2, b
SUB R2, R1, R2

u = a - c
LD R3, c
SUB R1, R1, R3

v = t + u
ADD R3, R2, R1

a = d
LD R2, d

d = v + u
ADD R1, R3, R1

exit
ST a, R2
ST d, R1

R1 R2 R3

d a v

a b c d t u v

a,R2 b c d,R1 R3
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Function getReg

For each instruction x = y op z

• To compute Ry

1. If y is in register, −→ Ry

2. Else, if empty register available, −→ Ry

3. Else, select occupied register

For each register R and variable v in R

(a) If v is also somewhere else, then OK

(b) If v is x, and x is not z, then OK

(c) Else, if v is not used later, then OK

(d) Else, ST v,R is required

Take R with smallest number of stores
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Function getReg

For each instruction x = y op z

• To compute Rx, similar with few differences (which?)

For each instruction x = y, choose Rx = Ry
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Exercise.
(Exercise 1 one from exercise class; cf. Exercise 8.6.1/8.6.4)

Consider the following C code:

x = a[i] + 1;

k = x;

b[i][j] = k + y;

Assume
that all array elements are integers taking four bytes each,
and that b is 100× 100 array

a. Generate three-address code for this C code
b. Convert your three-address code into machine code, using the
simple code-generation algorithm of this section, assuming three
registers are available. Show the register and address descriptors
after each step.
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Addressing Modes of Target Machine
(from college 7)

Form Address Example

r r LD R1, R2
x x LD R1, x
a(r) a+ contents(r) LD R1, a(R2)
c(r) c+ contents(r) LD R1, 100(R2)
∗r contents(r) LD R1, ∗R2
∗c(r) contents(c+ contents(r)) LD R1, ∗100(R2)
#c LD R1,#100
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8.8 Register Allocation and Assignment

So far, live variables in registers are stored at end of block

Use of registers

• Operands of operation must be in registers

• To hold values of temporary variables

• To hold (global) values that are used in several blocks

• To manage run-time stack
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Usage counts

With x in register during loop L

• Save . . . for . . . use of x that is not preceded by assignment

in same block

• Save . . . for each block, where x is assigned a value and x is

live on exit

•

Total savings ≈

∑

blocks B∈L

. . .

Choose variables x with largest savings
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Usage counts

With x in register during loop L

• Save 1 for each use of x that is not preceded by assignment

in same block

• Save 2 for each block, where x is assigned a value and x is

live on exit

•

Total savings ≈

∑

blocks B∈L

use(x,B) + 2 ∗ live(x,B)

Choose variables x with largest savings
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Usage counts (Example)

?

a = b + c

d = d - b

e = a + f
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b = d + f

e = a - c
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bcdf

acdef

acde

cdef

acdf

bcdef

b,d,e,f live

cdef

bcdef

b,c,d,e,f live

Savings for a are 1 + 1+ 1 ∗ 2 = 4
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8.5 Optimization of Basic Blocks

To improve running time of code

• Local optimization: within block

• Global optimization: across blocks

Local optimization benefits from DAG representation of basic

block
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DAG Representation of Basic Blocks

1. A node for initial value of each variable appearing in block

2. A node N for each statement s in block

Children of N are nodes corresponding to last definitions of

operands used by s

3. Node N is labeled by operator applied at s
N has list of variables for which s is last definition in block

4. Output nodes ≈ live on exit

Example:

a = b + c

b = a - d

c = b + c

d = a - d
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Local Common Subexpression
Elimination

• Use value-number method to detect common subexpressions

• Remove redundant computations

Example:

a = b + c

b = a - d

c = b + c

d = a - d
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Local Common Subexpression
Elimination

• Use value-number method to detect common subexpressions

• Remove redundant computations

Example:

a = b + c

b = a - d

c = b + c

d = a - d

a = b + c

b = a - d

c = b + c

d = b
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Dead Code Elimination

• Remove roots with no live variables attached

• If possible, repeat

Example:

a = b + c

b = b - d

c = c + d

e = b + c

No common subexpression

If c and e are not live. . .
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Dead Code Elimination

• Remove roots with no live variables attached

• If possible, repeat

Example:

a = b + c

b = b - d

c = c + d

e = b + c

a = b + c

b = b - d

No common subexpression

If c and e are not live. . .
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Algebraic Transformations

(see assignment 3)

Algebraic identities:

x+0 = 0+ x = x
x ∗ 1 = 1 ∗ x = x

Reduction in strength:

x2 = x ∗ x (cheaper)
2 ∗ x = x+ x (cheaper)
x/2 = x ∗ 0.5 (cheaper)

Constant folding:

2 ∗ 3.14 = 6.28
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Algebraic Transformations

Common subexpressions resulting from commutativity / asso-

ciativity of operators:

x ∗ y = y ∗ x
c+ d+ b = (b+ c) + d

Common subexpressions generated by relational operators:

x > y ⇔ x− y > 0
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8.7 Peephole Optimization

• Examines short sequence of instructions in a window (peep-

hole) and replace them by faster/shorter sequence

• Applied to intermediate code or target code

• Typical optimizations

– Redundant instruction elimination

– Eliminating unreachable code

– Flow-of-control optimization

– Algebraic simplification

– Use of machine idioms
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Redundant Instruction Elimination

Example:

ST a, R0

LD R0, a
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Eliminating Unreachable Code

Example:

if debug == 1 goto L1

goto L2

L1: print debugging information

L2:
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Eliminating Unreachable Code

Example:

if debug != 1 goto L2

L1: print debugging information

L2:

If debug is set to 0 at beginning of program, . . .

27



Flow-of-Control Optimizations

Example 1:

goto L1

...

L1: goto L2

Example 3:

goto L1

. . .

L1: 1f a < b goto L2

L3:
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9.1 The Principal Sources
of Optimization

Causes of redundancy

• At source level

• Side effect of high-level programming language, e.g., A[i][j]
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A Running Example: Quicksort
void quicksort (int m, int n)

/* recursively sorts a[m] through a[n] */
{

int i, j;
int v, x;

if (n <= m) return;

i = m-1; j = n; v = a[n];
while (1)
{ do i = i+1; while (a[i] < v);

do j = j-1; while (a[j] > v);
if (i >= j) break;
x = a[i]; a[i] = a[j]; a[j] = x; /* swap a[i], a[j] */

}
x = a[i]; a[i] = a[n]; a[n] = x; /* swap a[i], a[n] */

quicksort(m,j); quicksort(i+1,n);
}
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Three-Address Code Quicksort

−→ (1) i = m-1
(2) j = n
(3) t1 = 4*n
(4) v = a[t1]

−→ (5) i = i+1
(6) t2 = 4*i
(7) t3 = a[t2]
(8) if t3<v goto (5)

−→ (9) j = j-1
(10) t4 = 4*j
(11) t5 = a[t4]
(12) if t5>v goto (9)

−→ (13) if i>=j goto (23)
−→ (14) t6 = 4*i

(15) x = a[t6]

(16) t7 = 4*i
(17) t8 = 4*j
(18) t9 = a[t8]
(19) a[t7] = t9
(20) t10 = 4*j
(21) a[t10] = x
(22) goto (5)

−→ (23) t11 = 4*i
(24) x = a[t11]
(25) t12 = 4*i
(26) t13 = 4*n
(27) t14 = a[t13]
(28) a[t12] = t14
(29) t15 = 4*n
(30) a[t15] = x
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Flow Graph
Quicksort

i = m-1
j = n

t1 = 4*n

v = a[t1]
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t2 = 4*i

t3 = a[t2]
if t3 < v goto B2
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t5 = a[t4]
if t5 > v goto B3
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if i >= j goto B6 B4
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t6 = 4*i

x = a[t6]

t7 = 4*i
t8 = 4*j

t9 = a[t8]

a[t7] = t9
t10 = 4*j

a[t10] = x
goto B2
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HHHHj
t11 = 4*i

x = a[t11]

t12 = 4*i

t13 = 4*n

t14 = a[t13]

a[t12] = t14

t15 = 4*n

a[t15] = x

B6
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Local Common
Subexpressions

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1
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i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2
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j = j-1

t4 = 4*j

t5 = a[t4]
if t5 > v goto B3
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if i >= j goto B6 B4
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t6 = 4*i

x = a[t6]

t7 = 4*i
t8 = 4*j

t9 = a[t8]

a[t7] = t9
t10 = 4*j

a[t10] = x
goto B2
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t11 = 4*i

x = a[t11]

t12 = 4*i

t13 = 4*n

t14 = a[t13]

a[t12] = t14

t15 = 4*n

a[t15] = x

B6
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Global Common
Subexpressions

i = m-1
j = n

t1 = 4*n

v = a[t1]
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i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2
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t4 = 4*j

t5 = a[t4]
if t5 > v goto B3
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t6 = 4*i

x = a[t6]

t8 = 4*j

t9 = a[t8]

a[t6] = t9

a[t8] = x
goto B2
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t11 = 4*i

x = a[t11]

t13 = 4*n

t14 = a[t13]

a[t11] = t14

a[t13] = x

B6
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Global Common
Subexpressions

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1
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i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2
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t4 = 4*j

t5 = a[t4]
if t5 > v goto B3
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t6 = 4*i

x = a[t6]

t9 = a[t4]

a[t6] = t9

a[t4] = x
goto B2
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t11 = 4*i

x = a[t11]

t13 = 4*n

t14 = a[t13]

a[t11] = t14

a[t13] = x

B6
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Global Common
Subexpressions

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1
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t2 = 4*i

t3 = a[t2]
if t3 < v goto B2
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t4 = 4*j

t5 = a[t4]
if t5 > v goto B3
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t6 = 4*i

x = a[t6]

a[t6] = t5

a[t4] = x
goto B2
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t11 = 4*i

x = a[t11]

t13 = 4*n

t14 = a[t13]

a[t11] = t14

a[t13] = x

B6
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Global Common
Subexpressions

i = m-1
j = n

t1 = 4*n

v = a[t1]
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t2 = 4*i

t3 = a[t2]
if t3 < v goto B2
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if t5 > v goto B3
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x = a[t2]

a[t2] = t5

a[t4] = x
goto B2
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x = a[t2]

t14 = a[t1]

a[t2] = t14

a[t1] = x

B6
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Copy
Propagation

i = m-1
j = n

t1 = 4*n

v = a[t1]
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goto B2
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B6
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Dead-Code
Elimination

i = m-1
j = n

t1 = 4*n

v = a[t1]
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goto B2
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B6
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Dead-Code
Elimination

i = m-1
j = n

t1 = 4*n

v = a[t1]
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B6
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Code Motion

• loop-invariant computation

• compute before loop

• Example:

while (i <= limit-2) /* statement does not change limit */

After code-motion

t = limit-2

while (i <= t) /* statement does not change limit or t */
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Induction Variables
and Reduction in Strength

• Induction variable: each assignment to x of form x = x+ c

• Reduction in strength: replace expensive operation by cheaper

one
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Induct.Var /
Reduct.Strength

i = m-1
j = n

t1 = 4*n

v = a[t1]
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Induct.Var /
Reduct.Strength

i = m-1
j = n

t1 = 4*n

v = a[t1]

t2 = 4*i
t4 = 4*j
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Induct.Var /
Reduct.Strength

i = m-1
j = n

t1 = 4*n

v = a[t1]

t2 = 4*i
t4 = 4*j
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goto B2
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En verder. . .

• Maandag 18 november: inleveren opdracht 3

• Dinsdag 19 november: practicum over opdracht 4

• Eerst naar 403, daarna naar 302/304

• Inleveren 9 december

• Dinsdag 26 november: hoor-/werkcollege in 403

• Dinsdag 3 december: practicum over opdracht 4
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college 8

Code Generation

Code Optimization

Chapters for reading:

8.5–8.5.4, 8.6–8.7, 8.8–8.8.2

9.intro, 9.1
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