
Compilerconstructie

najaar 2013

http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 8, dinsdag 12 november 2013

Code Generation

Code Optimization

1



8.6 A Simple Code Generator

Use of registers

• Operands of operation must be in registers

• To hold values of temporary variables

• To hold (global) values that are used in several blocks

• To manage run-time stack

Assumption: subset of registers available for block

Machine instructions of form

• LD reg,mem

• ST mem, reg

• OP reg, reg, reg

2



Register and Address Descriptors

• Register descriptor keeps track of what is currently in register

– Example:

LD R, x → register R contains x

– Initially, all registers are empty

• Address descriptor keeps track of locations where current

value of a variable can be found

– Example:

LD R, x → x is (also) in R

– Information stored in symbol table

3



The Code-Generation Algorithm

For each three-address instruction x = y op z

1. Use getReg(x = y op z) to select registers Rx, Ry, Rz

2. If y is not in Ry, then issue instruction LD Ry, y′,
where y′ is a memory location for y
(according to address descriptor)

3. If z is not in Rz, . . .

4. Issue instruction OP Rx, Ry, Rz

Special case: x = y . . .

At end of block: store all variables that are live-on-exit and not
in their memory locations (according to address descriptor)

4



Managing Register / Address Descriptors

1. For the instruction LD R, x, . . .

2. For the instruction ST x,R, . . .

3. For an operation like ADD Rx, Ry, Rz, implementing x = y+ z,

(c) Remove Rx from addr. descr. of other variables

(d) Remove x from reg. descr. of other registers

(a) Change reg. descr. for Rx: only x

(b) Change addr. descr. for x: only in Rx (not in x itself!)

4. For the copy statement x = y, . . .

5



Managing Register / Address Descriptors

Example: d = (a− b) + (a− c) + (a− c) a = . . .old value of d

t = a - b
LD R1, a
LD R2, b
SUB R2, R1, R2

u = a - c
LD R3, c
SUB R1, R1, R3

v = t + u
ADD R3, R2, R1

a = d
LD R2, d

d = v + u
ADD R1, R3, R1

exit
ST a, R2
ST d, R1

R1 R2 R3 a b c d t u v

a b c d

6



Managing Register / Address Descriptors

Example: d = (a− b) + (a− c) + (a− c) a = . . .old value of d

t = a - b
LD R1, a
LD R2, b
SUB R2, R1, R2

u = a - c
LD R3, c
SUB R1, R1, R3

v = t + u
ADD R3, R2, R1

a = d
LD R2, d

d = v + u
ADD R1, R3, R1

exit
ST a, R2
ST d, R1

R1 R2 R3

d a v

a b c d t u v

a,R2 b c d,R1 R3

7



Function getReg

For each instruction x = y op z

• To compute Ry

1. If y is in register, −→ Ry

2. Else, if empty register available, −→ Ry

3. Else, select occupied register

For each register R and variable v in R

(a) If v is also somewhere else, then OK

(b) If v is x, and x is not z, then OK

(c) Else, if v is not used later, then OK

(d) Else, ST v,R is required

Take R with smallest number of stores

8



Function getReg

For each instruction x = y op z

• To compute Rx, similar with few differences (which?)

For each instruction x = y, choose Rx = Ry

9



Exercise.
(Exercise 1 one from exercise class; cf. Exercise 8.6.1/8.6.4)

Consider the following C code:

x = a[i] + 1;

k = x;

b[i][j] = k + y;

Assume
that all array elements are integers taking four bytes each,
and that b is 100× 100 array

a. Generate three-address code for this C code
b. Convert your three-address code into machine code, using the
simple code-generation algorithm of this section, assuming three
registers are available. Show the register and address descriptors
after each step.

10



Addressing Modes of Target Machine
(from college 7)

Form Address Example

r r LD R1, R2
x x LD R1, x
a(r) a+ contents(r) LD R1, a(R2)
c(r) c+ contents(r) LD R1, 100(R2)
∗r contents(r) LD R1, ∗R2
∗c(r) contents(c+ contents(r)) LD R1, ∗100(R2)
#c LD R1,#100

11



8.8 Register Allocation and Assignment

So far, live variables in registers are stored at end of block

Use of registers

• Operands of operation must be in registers

• To hold values of temporary variables

• To hold (global) values that are used in several blocks

• To manage run-time stack

12



Usage counts

With x in register during loop L

• Save . . . for . . . use of x that is not preceded by assignment

in same block

• Save . . . for each block, where x is assigned a value and x is

live on exit

•

Total savings ≈

∑

blocks B∈L

. . .

Choose variables x with largest savings

13



Usage counts

With x in register during loop L

• Save 1 for each use of x that is not preceded by assignment

in same block

• Save 2 for each block, where x is assigned a value and x is

live on exit

•

Total savings ≈

∑

blocks B∈L

use(x,B) + 2 ∗ live(x,B)

Choose variables x with largest savings

14



Usage counts (Example)

?

a = b + c

d = d - b

e = a + f

B1

�
�

�
��	

@
@
@@R

f = a - d B2

@
@
@

@@R

b = d + f

e = a - c
B3

�
�

��	

@
@
@@R

b = d + c B4

'

&

-

@
@
@@R

bcdf

acdef

acde

cdef

acdf

bcdef

b,d,e,f live

cdef

bcdef

b,c,d,e,f live

Savings for a are 1 + 1+ 1 ∗ 2 = 4

15



8.5 Optimization of Basic Blocks

To improve running time of code

• Local optimization: within block

• Global optimization: across blocks

Local optimization benefits from DAG representation of basic

block

16



DAG Representation of Basic Blocks

1. A node for initial value of each variable appearing in block

2. A node N for each statement s in block

Children of N are nodes corresponding to last definitions of

operands used by s

3. Node N is labeled by operator applied at s
N has list of variables for which s is last definition in block

4. Output nodes ≈ live on exit

Example:

a = b + c

b = a - d

c = b + c

d = a - d

17



Local Common Subexpression
Elimination

• Use value-number method to detect common subexpressions

• Remove redundant computations

Example:

a = b + c

b = a - d

c = b + c

d = a - d

18



Local Common Subexpression
Elimination

• Use value-number method to detect common subexpressions

• Remove redundant computations

Example:

a = b + c

b = a - d

c = b + c

d = a - d

a = b + c

b = a - d

c = b + c

d = b

19



Dead Code Elimination

• Remove roots with no live variables attached

• If possible, repeat

Example:

a = b + c

b = b - d

c = c + d

e = b + c

No common subexpression

If c and e are not live. . .

20



Dead Code Elimination

• Remove roots with no live variables attached

• If possible, repeat

Example:

a = b + c

b = b - d

c = c + d

e = b + c

a = b + c

b = b - d

No common subexpression

If c and e are not live. . .

21



Algebraic Transformations

(see assignment 3)

Algebraic identities:

x+0 = 0+ x = x
x ∗ 1 = 1 ∗ x = x

Reduction in strength:

x2 = x ∗ x (cheaper)
2 ∗ x = x+ x (cheaper)
x/2 = x ∗ 0.5 (cheaper)

Constant folding:

2 ∗ 3.14 = 6.28

22



Algebraic Transformations

Common subexpressions resulting from commutativity / asso-

ciativity of operators:

x ∗ y = y ∗ x
c+ d+ b = (b+ c) + d

Common subexpressions generated by relational operators:

x > y ⇔ x− y > 0

23



8.7 Peephole Optimization

• Examines short sequence of instructions in a window (peep-

hole) and replace them by faster/shorter sequence

• Applied to intermediate code or target code

• Typical optimizations

– Redundant instruction elimination

– Eliminating unreachable code

– Flow-of-control optimization

– Algebraic simplification

– Use of machine idioms

24



Redundant Instruction Elimination

Example:

ST a, R0

LD R0, a

25



Eliminating Unreachable Code

Example:

if debug == 1 goto L1

goto L2

L1: print debugging information

L2:

26



Eliminating Unreachable Code

Example:

if debug != 1 goto L2

L1: print debugging information

L2:

If debug is set to 0 at beginning of program, . . .

27



Flow-of-Control Optimizations

Example 1:

goto L1

...

L1: goto L2

Example 3:

goto L1

. . .

L1: 1f a < b goto L2

L3:

28



9.1 The Principal Sources
of Optimization

Causes of redundancy

• At source level

• Side effect of high-level programming language, e.g., A[i][j]

29



A Running Example: Quicksort
void quicksort (int m, int n)

/* recursively sorts a[m] through a[n] */
{

int i, j;
int v, x;

if (n <= m) return;

i = m-1; j = n; v = a[n];
while (1)
{ do i = i+1; while (a[i] < v);

do j = j-1; while (a[j] > v);
if (i >= j) break;
x = a[i]; a[i] = a[j]; a[j] = x; /* swap a[i], a[j] */

}
x = a[i]; a[i] = a[n]; a[n] = x; /* swap a[i], a[n] */

quicksort(m,j); quicksort(i+1,n);
}

30



Three-Address Code Quicksort

−→ (1) i = m-1
(2) j = n
(3) t1 = 4*n
(4) v = a[t1]

−→ (5) i = i+1
(6) t2 = 4*i
(7) t3 = a[t2]
(8) if t3<v goto (5)

−→ (9) j = j-1
(10) t4 = 4*j
(11) t5 = a[t4]
(12) if t5>v goto (9)

−→ (13) if i>=j goto (23)
−→ (14) t6 = 4*i

(15) x = a[t6]

(16) t7 = 4*i
(17) t8 = 4*j
(18) t9 = a[t8]
(19) a[t7] = t9
(20) t10 = 4*j
(21) a[t10] = x
(22) goto (5)

−→ (23) t11 = 4*i
(24) x = a[t11]
(25) t12 = 4*i
(26) t13 = 4*n
(27) t14 = a[t13]
(28) a[t12] = t14
(29) t15 = 4*n
(30) a[t15] = x

31



Flow Graph
Quicksort

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1

?
i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?
j = j-1

t4 = 4*j

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if i >= j goto B6 B4
�����

t6 = 4*i

x = a[t6]

t7 = 4*i
t8 = 4*j

t9 = a[t8]

a[t7] = t9
t10 = 4*j

a[t10] = x
goto B2

B5

'

&

-

HHHHj
t11 = 4*i

x = a[t11]

t12 = 4*i

t13 = 4*n

t14 = a[t13]

a[t12] = t14

t15 = 4*n

a[t15] = x

B6

32



Local Common
Subexpressions

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1

?
i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?
j = j-1

t4 = 4*j

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if i >= j goto B6 B4
�����

t6 = 4*i

x = a[t6]

t7 = 4*i
t8 = 4*j

t9 = a[t8]

a[t7] = t9
t10 = 4*j

a[t10] = x
goto B2

B5

'

&

-

HHHHj
t11 = 4*i

x = a[t11]

t12 = 4*i

t13 = 4*n

t14 = a[t13]

a[t12] = t14

t15 = 4*n

a[t15] = x

B6

33



Global Common
Subexpressions

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1

?
i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?
j = j-1

t4 = 4*j

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if i >= j goto B6 B4
�����

t6 = 4*i

x = a[t6]

t8 = 4*j

t9 = a[t8]

a[t6] = t9

a[t8] = x
goto B2

B5

'

&

-

HHHHj
t11 = 4*i

x = a[t11]

t13 = 4*n

t14 = a[t13]

a[t11] = t14

a[t13] = x

B6

34



Global Common
Subexpressions

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1

?
i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?
j = j-1

t4 = 4*j

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if i >= j goto B6 B4
�����

t6 = 4*i

x = a[t6]

t9 = a[t4]

a[t6] = t9

a[t4] = x
goto B2

B5

'

&

-

HHHHj
t11 = 4*i

x = a[t11]

t13 = 4*n

t14 = a[t13]

a[t11] = t14

a[t13] = x

B6

35



Global Common
Subexpressions

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1

?
i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?
j = j-1

t4 = 4*j

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if i >= j goto B6 B4
�����

t6 = 4*i

x = a[t6]

a[t6] = t5

a[t4] = x
goto B2

B5

'

&

-

HHHHj
t11 = 4*i

x = a[t11]

t13 = 4*n

t14 = a[t13]

a[t11] = t14

a[t13] = x

B6

36



Global Common
Subexpressions

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1

?
i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?
j = j-1

t4 = 4*j

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if i >= j goto B6 B4
�����

x = a[t2]

a[t2] = t5

a[t4] = x
goto B2

B5

'

&

-

HHHHj

x = a[t2]

t14 = a[t1]

a[t2] = t14

a[t1] = x

B6

37



Copy
Propagation

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1

?
i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?
j = j-1

t4 = 4*j

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if i >= j goto B6 B4
�����

x = t3

a[t2] = t5

a[t4] = x
goto B2

B5

'

&

-

HHHHj

x = t3

t14 = a[t1]

a[t2] = t14

a[t1] = x

B6

38



Dead-Code
Elimination

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1

?
i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?
j = j-1

t4 = 4*j

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if i >= j goto B6 B4
�����

x = t3

a[t2] = t5

a[t4] = t3
goto B2

B5

'

&

-

HHHHj

x = t3

t14 = a[t1]

a[t2] = t14

a[t1] = t3

B6

39



Dead-Code
Elimination

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1

?
i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?
j = j-1

t4 = 4*j

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if i >= j goto B6 B4
�����

a[t2] = t5

a[t4] = t3
goto B2

B5

'

&

-

HHHHj

t14 = a[t1]

a[t2] = t14

a[t1] = t3

B6

40



Code Motion

• loop-invariant computation

• compute before loop

• Example:

while (i <= limit-2) /* statement does not change limit */

After code-motion

t = limit-2

while (i <= t) /* statement does not change limit or t */

41



Induction Variables
and Reduction in Strength

• Induction variable: each assignment to x of form x = x+ c

• Reduction in strength: replace expensive operation by cheaper

one

42



Induct.Var /
Reduct.Strength

i = m-1
j = n

t1 = 4*n

v = a[t1]

B1

?
i = i+1

t2 = 4*i

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?
j = j-1

t4 = 4*j

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if i >= j goto B6 B4
�����

a[t2] = t5

a[t4] = t3
goto B2

B5

'

&

-

HHHHj
t14 = a[t1]

a[t2] = t14

a[t1] = t3

B6

43



Induct.Var /
Reduct.Strength

i = m-1
j = n

t1 = 4*n

v = a[t1]

t2 = 4*i
t4 = 4*j

B1

?
i = i+1

t2 = t2+4

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?
j = j-1

t4 = t4-4

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if i >= j goto B6 B4
�����

a[t2] = t5

a[t4] = t3
goto B2

B5

'

&

-

HHHHj
t14 = a[t1]

a[t2] = t14

a[t1] = t3

B6

44



Induct.Var /
Reduct.Strength

i = m-1
j = n

t1 = 4*n

v = a[t1]

t2 = 4*i
t4 = 4*j

B1

?

t2 = t2+4

t3 = a[t2]
if t3 < v goto B2

B2

'

&

-

?

t4 = t4-4

t5 = a[t4]
if t5 > v goto B3

B3

'

&

-

?
if t2 >= t4 goto B6 B4
�����

a[t2] = t5

a[t4] = t3
goto B2

B5

'

&

-

HHHHj
t14 = a[t1]

a[t2] = t14

a[t1] = t3

B6

45



En verder. . .

• Maandag 18 november: inleveren opdracht 3

• Dinsdag 19 november: practicum over opdracht 4

• Eerst naar 403, daarna naar 302/304

• Inleveren 9 december

• Dinsdag 26 november: hoor-/werkcollege in 403

• Dinsdag 3 december: practicum over opdracht 4

46



Compiler constructie

college 8

Code Generation

Code Optimization

Chapters for reading:

8.5–8.5.4, 8.6–8.7, 8.8–8.8.2

9.intro, 9.1

47


