
Compilerconstructie

najaar 2012

http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 7, dinsdag 5 november 2013

Storage Organization

Code Generation

1



7.1 Storage Organization

Stack

Free Memory

Heap

Static

Code

?

6

Typical subdivision of run-time memory into code and data areas

2



7.2 Stack Allocation of Space
int a[11];
void readArray() /* Reads 9 integers into a[1],...a[9]. */
{ int i;

...
}
int partition (int m, int n)
{ /* Picks a separator value v, and partitions a[m..n] so that

a[m..p-1] are less than v, a[p]=v, and a[p+1..n} are
equal to or greater than v. Returns p. */

...
}
void quicksort (int m, int n)
{ int i;

if (n > m)
{ i = partition(m, n);

quicksort(m, i-1);
quicksort(i+1, n);

}
}
main ()
{ readArray();

a[0] = -9999;
a[10] = 9999;
quicksort(1,9);

}

3



Possible Activations
enter main()

enter readArray()
leave readArray()
enter quicksort(1,9)

enter partition(1,9)
leave partition(1,9)
enter quicksort(1,3)

...
leave quicksort(1,3)
enter quicksort(5,9)

...
leave quicksort(5,9)

leave quicksort(1,9)
leave main()

4



7.2.1 Activation Trees
������������

Q
Q
Q
QQ

�������������

�
�

�
��

`````````````````̀

������

HHHHHH

������

HHHHHH

������

HHHHHH

������

HHHHHH

m

r q(1,9)

p(1,9) q(1,3) q(5,9)

p(1,3) q(1,0) q(2,3) p(5,9) q(5,5) q(7,9)

p(2,3) q(2,1) q(3,3) p(7,9) q(7,7) q(9,9)

5



Traversal of Activation Tree

1. Sequence of procedure calls ≈ preorder traversal

2. Sequence of procedure returns ≈ postorder traversal

3. When control lies at particular node (≈ activation),

the ‘open’ (live) activations are on path from root

6



7.2.2. Activation Records

Temporaries

Local data

Saved machine status

Access link

Control link

Returned values

Actual parameters

Possible (order of) elements of activation record

7



Code Generator Position in a Compiler

source

program
- Front

End
-intermediate

code

Code
Optimizer

-intermediate

code

Code
Generator

-
target

program

• Output code must

– be correct

– use resources of target machine effectively

• Code generator must run efficiently

Generating optimal code is undecidable problem
Heuristics are available

8



8.1 Issues in Design of Code Generator

• Input to the code generator

• The target program

• Instruction selection

• Register allocation and assignment

• Evaluation order

9



Input to the Code Generator

• Intermediate representation of source program

– Three-address representations (e.g., quadruples)

– Virtual machine representations (e.g., bytecodes)

– Postfix notation

– Graphical representations (e.g., syntax trees and DAGs)

• Information from symbol table to determine run-time ad-

dresses

• Input is free of errors

– Type checking and conversions have been done

10



The Target Program

• Common target-machine architectures

– RISC: reduced instruction set computer

– CISC: complex instruction set computer

– Stack-based

• Possible output

– Absolute machine code (executable code)

– Relocatable machine code (object files for linker)

– Assembly-language

11



Instruction Selection

• Given IR program can be implemented by many different
code sequences

• Different machine instruction speeds

• Naive approach: statement-by-statement translation, with a
code template for each IR statement

Example: x = y + z

LD RO, y
ADD R0, R0, z
ST x, R0

Now, a = b+c d = a+e

LD RO, b
ADD R0, R0, c
ST a, R0
LD RO, a
ADD R0, R0, e
ST d, R0

12



Target Machine

• Designing code generator requires understanding of target

machine and its instruction set

• Our machine model

– byte-addressable

– has n general purpose registers R0, R1, . . . , Rn− 1

– assumes operands are integers

13



Instructions of Target Machine

• Load operations: LD dst,addr

e.g., LD r, x or LD r1, r2

• Store operations: ST x, r

• Computation operations: OP dst, src1, src2
e.g., SUB r1, r2, r3

• Unconditional jumps: BR L

• Conditional jumps: Bcond r, L

e.g., BLTZ r, L

14



Addressing Modes of Target Machine

Form Address Example

r r LD R1, R2

x x LD R1, x

a(r) a+ contents(r) LD R1, a(R2)
c(r) c+ contents(r) LD R1, 100(R2)
∗r contents(r) LD R1, ∗R2
∗c(r) contents(c+ contents(r)) LD R1, ∗100(R2)
#c LD R1,#100

15



Addressing Modes (Examples)

b = a[i]:

LD R1, i
MUL R1, R1, #8
LD R2, a(R1)
ST b, R2

a[j] = c

LD R1, c
LD R2, j
MUL R2, R2, #8
ST a(R2), R1

x = *p

LD R1, p
LD R2, 0(R1)
ST x, R2

if x < y goto L

LD R1, x
LD R2, y
SUB R1, R1, R2
BLTZ R1, M

16



Instruction Costs

• Costs associated with compiling / running a program

– Compilation time

– Size, running time, power consumption of target program

• Finding optimal target problem: undecidable

• (Simple) cost per target-language instruction:

– 1 + cost for addressing modes of operands

≈ length (in words) of instruction

Examples:

instruction cost

LD R0, R1 1
LD R0, x 2
LD R1, *100(R2) 2

17



8.4 Basic Blocks and Flow Graphs

1. Basic block: maximal sequence of consecutive three-address

instructions, such that

(a) Flow of control can only enter through first instruction of

block

(b) Control leaves block without halting or branching

2. Flow graph: graph with

nodes: basic blocks

edges: indicate flow between blocks

18



Determining Basic Blocks

• Determine leaders

1. First three-address instruction is leader

2. Any instruction that is target of goto is leader

3. Any instruction that immediately follows goto is leader

• For each leader, its basic block consists of leader and all

instructions up to next leader (or end of program)

19



Determining Basic Blocks (Example)

Determine leaders

Pseudo code

for i = 1 to 10 do
for j = 1 to 10 do

a[i, j] = 0.0;
for i = 1 to 10 do

a[i, i] = 1.0;

Three-address code

1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)

10) i = i + 1
11) if i <= 10 goto (2)
12) i = 1
13) t5 = i - 1
14) t6 = 88 * t5
15) a[t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

20



Determining Basic Blocks (Example)

Determine leaders

Pseudo code

for i = 1 to 10 do
for j = 1 to 10 do

a[i, j] = 0.0;
for i = 1 to 10 do

a[i, i] = 1.0;

Three-address code

−→ 1) i = 1
−→ 2) j = 1
−→ 3) t1 = 10 * i

4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)

−→ 10) i = i + 1
11) if i <= 10 goto (2)

−→ 12) i = 1
−→ 13) t5 = i - 1

14) t6 = 88 * t5
15) a[t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

21



Flow Graph

Edge from block B to block C

• if there is (un)conditional jump from end of B to beginning

of C

• if C immediately follows B in original order,

and B does not end in unconditional jump

22



Flow Graph (Example)

Three-address code

−→ 1) i = 1
−→ 2) j = 1
−→ 3) t1 = 10 * i

4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)

−→ 10) i = i + 1
11) if i <= 10 goto (2)

−→ 12) i = 1
−→ 13) t5 = i - 1

14) t6 = 88 * t5
15) a[t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

ENTRY

?

i = 1B1

?
j = 1B2

?
t1 = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4 = t3 - 88

a[t4] = 0.0

j = j + 1

if j <= 10 goto B3

B3

$

%

�

?

i = i + 1

if i <= 10 goto B2

$

%

�

B4

?

i = 1B5

?
23



Loops in Flow Graph

Loop is set of nodes

• With unique loop entry e

• Every node in L has

nonempty path in L to e

Example

• {B3}, with loop entry B3

• {B2, B3, B4}, with loop

entry B2

• {B6}, with loop entry B6

ENTRY

?

i = 1B1

?
j = 1B2

?
t1 = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4 = t3 - 88

a[t4] = 0.0

j = j + 1

if j <= 10 goto B3

B3

$

%

�

?

i = i + 1

if i <= 10 goto B2

$

%

�

B4

?

i = 1B5

?
24



Next-Use Information

• Next-use information is needed for dead-code elimination and

register assignment

(i) x = a * b

...

(j) z = c + x

Instruction j uses value of x computed at i

x is live at i,

i.e., we need value of x later

• For each three-address statement x = y op z in block, record

next-uses of x, y, z

25



Determining Next-Use Information

For single basic block

• Assume all non-temporary variables are live on exit

• Make backward scan of instructions in block

• For each instruction i: x = y op z

1. Attach to i current next-use- and liveness information of
x, y, z

2. Set x to ‘not live’ and ‘no next use’

3. Set y and z to ‘live’
Set ‘next uses’ of y and z to i

26



Passing Liveness Information over Blocks

Example of loop

?

a = b + c

d = d - b

e = a + f

B1

�
�

�
��	

@
@
@@R

f = a - d B2

@
@
@

@@R

b = d + f

e = a - c
B3

�
�

��	

@
@
@@R

b = d + c B4

'

&

-

@
@
@@R

27



Passing Liveness Information over Blocks

Example of loop

?

a = b + c

d = d - b

e = a + f

B1

�
�

�
��	

@
@
@@R

f = a - d B2

@
@
@

@@R

b = d + f

e = a - c
B3

�
�

��	

@
@
@@R

b = d + c B4

'

&

-

@
@
@@R

bcdf

acdef

acde

cdef

acdf

bcdef

b,d,e,f live

cdef

bcdef

b,c,d,e,f live

28



Compiler constructie

college 7

Storage Organization

Code Generation

Chapters for reading:

7.1, 7.2–7.2.3

8.intro, 8.1, 8.2, 8.4

29


