Compilerconstructie
najaar 2013
http://www.liacs.nl/home/rvvliet/coco/
Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl

college 3, dinsdag 17 september 2013

Syntax Analysis (1)

4.1 Parser’s Position in a Compiler

source parse intermediate
program [Lexical | _roken tree | Rest of |representation
7 Analyser Parser ~ Frond End
get next ;
token

Symbol
Table
e Obtain string of tokens

e Verify that string can be generated by the grammar

e Report and recover from syntax errors

4.2 Context-Free Grammars

Context-free grammar is a 4-tuple with
e A set of nonterminals (syntactic variables)
e A set of tokens (terminal symbols)
e A designated start symbol (nonterminal)
e A set of productions: rules how to decompose nonterminals

Example: CFG for simple arithmetic expressions:
G = ({expr, term, factor}, {id,+,—,*,/,(,)}, expr, P)
with productions P:

expr — expr+ term | expr — term | term
term — term x factor | term/factor | factor
factor — (expr) |id

Notational Conventions (Example)

CFG for simple arithmetic expressions:
G = ({expr, term, factor}, {id,+,—,x,/,(,)}, expr, P)
with productions P:
expr — expr+ term | expr — term | term

term — term x factor | term/factor | factor
factor — (expr) |id

Can be rewritten concisely as:
E - E+T|E-T|T
T - TxF|T/F|F
F — (B)|id

4 Syntax Analysis

e Every language has rules prescribing the syntactic structure
of the programs:
— functions, made up of declarations and statements
— statements made up of expressions
— expressions made up of tokens

Syntax of programming-language constructs can be described

by CFG

— Precise syntactic specification

— Automatic construction of parsers for certain classes of
grammars

— Structure imparted to language by grammar is useful for
translating source programs into object code

— New language constructs can be added easily

e Syntax analyis is performed by parser

Parsing

Finding parse tree for given string

e Universal (any CFG)
— Cocke-Younger-Kasami
— Earley

e Top-down (CFG with restrictions)
— Predictive parsing
— LL (Left-to-right, Leftmost derivation) methods
— LL(1): LL parser, needs only one token to look ahead

e Bottom-up (CFG with restrictions)

Today: top-down parsing
Next week: bottom-up parsing

Notational Conventions
1. Terminals:
.; specific terminals: +,x,(,),0,1,id,if,...
2. Nonterminals:
A, B,C,...; specific nonterminals: S,expr,stmt,...,E,..

a,b,c,.

3. Grammar symbols: X,Y,Z
4. Strings of terminals: w,v,w,z,y, 2

5. Strings of grammar symbols: «, 3,7, .
Hence, generic production: A — «

6. A-productions:
A= o, A= an,. A= oy = A—oag|ag]...|og
Alternatives for A

7. By default, head of first production is start symbol

Derivations
Example grammar:
E—-E+E | ExE | —E | (E) | id

e In each step, a nonterminal is replaced by body of one of its
productions, e.g.,

E=-E=—(F)= —(id)

e One-step derivation:
aAB = avyB, where A — v is production in grammar

Derivation in zero or more steps: =

e Derivation in one or more steps: mw

Derivations
o If S = o, then « is sentential form of G
e If S = o and « has no nonterminals, then a is sentence of G
e Language generated by G is L(G) = {w | w is sentence of G}

e Leftmost derivation: wA~y NU wdy
m

o If S NH‘,v «, then « is left sentential form of G
m

e Rightmost derivation: yAw mVaéS_ =

Example of leftmost derivation:

E=-E=—(E)= —(E+E)= —(id+ E) = —(id + id)
Im Im Im Im

Im

9

Parse Trees and Derivations
E—-E+E | ExE | —E | (E) | id
E=-E=—(E)= —(E+E)= —(id+ E) = —(id + id)
Im Im Im Im Im
E
VRN
- E
VAR
(B)
VAR
T

id id

Many-to-one relationship between derivations and parse trees. . .
11

Ambiguity
More than one leftmost/rightmost derivation for same sentence
Example: a+bxc
E = E+FE E = ExE
= id+FE = E+ExE
= id+FExFE = id+FExFE
= id+id*xE = id4+id«xF
= id+idx*id = id+id=xid
E E
RN RN
E + E E = E
VN SN
id B+ E E + E id
f f f f
a+ (bxc) id id id id

(a+0b)*c
13

Eliminating ambiguity

Example: ambiguous “dangling-else” -grammar

stmt — if expr then stmt
| if expr then stmt else stmt
| other

Only matched statements between then and else. ..

if

Parse Tree
(from college 1)

(derivation tree in FI2)
e The root of the tree is labelled by the start symbol

e Each leaf of the tree is labelled by a terminal (=token) or e
(=empty)

e Each interior node is labelled by a nonterminal

e If node A has children X1, X»,..., Xy, then there must be a
production A — X1 X5...Xp

Yield of the parse tree: the sequence of leafs (left to right)

10

4.3.1 Why Regular Expressions
For Lexical Syntax?

e Convenient way to modularize front end
=~ simplifies design

e Regular expressions powerful enough for lexical syntax

e Regular expressions easier to understand than grammars

More efficient lexical analysers can be constructed automat-
ically from regular expressions than from arbitrary grammars

12

Eliminating ambiguity
e Sometimes ambiguity can be eliminated
e Example: “dangling-else’’-grammar

stmt — if expr then stmt
| if expr then stmt else stmt
| other
Here, other is any other statement

if £y then if £, then S; else S,

stmt. stmt.
N~ P
mbe n:m&m\ﬁzn// if mxibx then \m»:ﬁw/w_mm mmaxn
Ey if mJU\ then mmﬁii else mJ:W Ey _ng then mnﬂu S
E> S1 Sa E> St

14

Eliminating ambiguity

Example: ambiguous “dangling-else” -grammar

stmt — if expr then stmt
| if expr then stmt else stmt
| other

Equivalent unambiguous grammar

stmt — matchedstmt
| openstmt
matchedstmt — if expr then matchedstmt else matchedstmt
| other
openstmt — if expr then stmt
| if expr then matchedstmt else openstmt
Only one parse tree for
if £; then if E5 then S; else S,
Associates each else with closest previous unmatched then
16

2.4 Parsing (Top-Down Example)

from college 1

stmt — expr ;
| if (expr)stmt
| for (optexpr ; optexpr ; optexpr)stmt
| other
optexpr — €
| expr

How to determine parse tree for
for (; expr ;expr)other
Use lookahead: current terminal in input

Recursive Descent Parsing
Recursive procedure for each nonterminal

void A()
1) { Choose an A-production, A — X1 X5 ... X};
2) for (i=1to k)
3) {if (X; is nonterminal)

4) call procedure X;();
5) else if (X; equals current input symbol a)
6) advance input to next symbol;
7) else /* an error has occurred */;
}
}

Pseudocode is nondeterministic

Predictive Parsing
from college 1

e Recursive-descent parsing ...
e Predictive parsing is a special form of recursive-descent pars-
ing:
— The lookahead symbol unambiguously determines the pro-
duction for each nonterminal

Simple example:
stmt — expr ;
| if (expr)stmt
| for (optexpr ; optexpr ; optexpr)stmt
| other

21

Using FIRST

from college 1
e Let a be string of grammar symbols

e FIRST () is the set of terminals that appear as first symbols
of strings generated from «

Simple example:

stmt — expr ;
| if (expr)stmt
| for (optexpr ; optexpr ;optexpr)stmt
| other

Right-hand side may start with nonterminal. ..
23

Predictive Parsing

from college 1

e Recursive-descent parsing is a top-down parsing method:
— Executes a set of recursive procedures to process the input

— Every nonterminal has one (recursive) procedure parsing
the nonterminal’s syntactic category of input tokens

e Predictive parsing ...

18

Recursive Descent

e One may use backtracking:
— Try each A-production in some order

— In case of failure at line 7 (or call in line 4),
return to line 1 and try another A-production

— Input pointer must then be reset,
so store initial value input pointer in local variable

e Example in book

e Backtracking is rarely needed: predictive parsing

20

Predictive Parsing (Example)
from college 1

void stmt()
{ switch (lookahead)
{ case expr:
match(expr); match(’;’); break;
case if:
match(if); match(’ (’); match(expr); match(’)’); stmt();
break;
case for:
match(for); match(’(’);
optexpr(); match(’;’); optexpr(); match(’;’); optexpr();
match(’)’); stmt(); break;
case other;
match(other); break;
default:
report ("syntax error");
}
}

void match(terminal t)
{ if (lookahead==t) lookahead = nextTerminal;

else report("syntax error");

}
22

Using FIRST

from college 1
e Let a be string of grammar symbols

e FIRST () is the set of terminals that appear as first symbols
of strings generated from «

e When a nontermimal has multiple productions, e.g.,
A= alpB

then FIRST (a) and FIRST(3) must be disjoint in order for
predictive parsing to work

24

Left Recursion

e Productions of the form A — Aa | 8 are left-recursive
— [does not start with A

— Example: E—E+T|T

e Top-down parser may loop forever if grammar has left-recursive
productions

e Left-recursive productions can be eliminated by rewriting pro-
ductions

25

Left Recursion Elimination

General left recursion

e Left recursion involving two or more steps

S — Balb
B — AAla
A — Ac|Sd

e S is left-recursive because

S = Ba = AAa = SdAa (not immediately left-recursive)

27

General Left Recursion Elimination
Algorithm for G with no cycles or e-productions

1) arrange nonterminals in some order A1, Ap,..., Ap
2) for (i=1ton)
3){for (j=1toi—1)
4) { replace each production of form A; — Ajy
by the productions A; — 617 | d2v | ... | 6y, where
Aj =01 |02 | ... |8 are all current Aj-productions
5 }
6) eliminate immediate left recursion among A;-productions

7}

Example with A — ¢
29

Left Factoring (Example)

e Which production to choose when input token is if?

stmt — if expr then stmt
| if expr then stmt else stmt
| other

expr — b

e Or abstract:

S — iEtS|iEtSeS | a
E — b
o Left-factored:

31

Left Recursion Elimination

Immediate left recursion
e Productions of the form A — Aa | 8
e Can be eliminated by replacing the productions by

A — BA (A" is new nonterminal)
Al — aAl e (A" — a A is right recursive)

e Procedure:

1. Group A-productions as
A — \—QHi\yQM_i\wQE_EHTmMiiE:
2. Replace A-productions by

A = B1A | BA | .. | BrA!
A = ag A axA | amA | €

26

General Left Recursion Elimination

S — Balb
B — AAla
A = Ac|Sd

e We order nonterminals: S, B, A (n = 3)
e Variables may only ‘point forward’
e ;=1 and ¢« = 2: nothing to do
e ;=3
— substitute A — Sd

— substitute A — Bad
— eliminate immediate left-recursion in A-productions

28

Left Factoring

Another transformation to produce grammar suitable for predic-
tive parsing

e If A — afy | aBz and input begins with nonempty string
derived from «
How to expand A? To afy or to af?

e Solution: left-factoring
Replace two A-productions by

A = ad
A = B B2

30

Left Factoring (Example)

What is result of left factoring for

S —abS | abcA | aaa | aab | aA

32

Non-Context-Free Language Constructs

e Declaration of identifiers before their use

4.4 Top-Down Parsing
L1 = {wew | w € {a,b}*}
e Construct parse tree,
e Number of formal parameters in function declaration equals .
number of actual parameters in function call — starting from the root
Function call may be specified by

. . — creating nodes in preorder
stmt — id (expr_list) 'ng P

expr-list — expr_list, expr | expr Corresponds to finding leftmost derivation

Ly = {a™"c™d™ | m,n > 1}

Such checks are performed during semantic-analysis phase
33 34

Top-Down Parsing (Example)

E — E4T|T
Top-Down Parsing (Example) T — T+F|F
F — (E)|id
L[]
E - E+T|T e Non-left-recursive variant:
T — T+F|F E — TE
F — (BE)|id E' - +TFE'|e
T — FT'
T — «FT'|e
e Non-left-recursive variant: ... F — (£)]id

e Top-down parse for input id 4 id xid . ..
e At each step: determine production to be applied

35 36

FIRST

|_|OU|HVO<<= _Um:\m_—._Q e Let o be string of grammar symbols

FIRST (o) = set of terminals/tokens which begin strings de-
rived from «

o If a = ¢, then € € FIRST (a)
Example

Recursive-descent parsing

e Predictive parsing

— Eliminate left-recursion from grammar .
F — (BE)|id
— Left-factor the grammar

— Compute FIRST and FOLLOW

FIRST(FT") = {(,id}
e When nonterminal has multiple productions, e.g.,
— Two variants:

. . A= alpB
* Recursive (recursive calls) and FIRST () and FIRST(3) are disjoint,
+ Non-recursive (explicit stack) we can choose between these A-productions by looking at
next input symbol
37 38
Computing FIRST FIRST (Example)
Compute FIRST(X) for all grammar symbols X:
E — TFE
o If X is terminal, then FIRST(X) = {X} E' — +TE|e
T — FT'
)) T — *FT|e
e If X — ¢ is production, then add e to FIRST(X) N
F —» (B)|id

e Repeat adding symbols to FIRST(X) by looking at produc-

tions
FIRST(E) = FIRST(T) = FIRST(F) = {(,id}
X =>Y1Ys... Y} FIRST(E) = {+, ¢}
(see book) until all FIRST sets are stable FIRST(T) = {*¢t

39 40

FOLLOW

e Let A be nonterminal

e FOLLOW(A) is set of terminals/tokens that can appear im-

mediately to the right of A in sentential form:

FOLLOW(A) = {a | S = adaB}

e Compute FOLLOW(A) for all nonterminals A

See book

Parsing Tables

41

When next input symbol is a (terminal or input endmarker $),

we may choose A — «
e if a € FIRST ()

o if (@a=¢cora=e¢) and a € FOLLOW(A)

Algorithm to construct parsing table M[A,a]

for (each production A — «)
{ for (each a € FIRST (a))
add A — a to M[A,al;
if (¢ € FIRST (o))
{ for (each b € FOLLOW(A))
add A — a to M[A,b];
}

)

If M[A, a] is empty, set M[A, a] to error.

LL(1) Grammars
o LL(1)

Left-to-right scanning of input, Leftmost derivation,
1 token to look ahead suffices for predictive parsing

e Grammar G is LL(1),

if and only if for two distinct productions A — « | 3,

43

— « and B do not both derive strings beginning with same

terminal a

— at most one of a and 3 can derive €

—if g = e, then a does not derive strings beginning with

terminal a € FOLLOW(A)

e In other words, .

e Grammar G is LL(1), if and only if parsing table uniquely

identifies production or signals error

Nonrecursive Predictive Parsing

Cf. top-down PDA from FI2

Predictive
Parsing
Program

7

Parsing
Table M

Output

45

47

FIRST and FOLLOW (Example)

E — TE
E' — +TFE |e
T — FT'
T — *FT'|e¢
F — (E)|id

FIRST(E) = FIRST(T) = FIRST(F) = {(,id}

FIRST(E") = {+,¢}
FIRST(T') = {x,¢}

FOLLOW(E) = FOLLOW(E') ={),$}
FOLLOW(T) = FOLLOW(T') ={+,),$}
FOLLOW(F) = {x+,),$}

42

Top-Down Parsing Table (Example)

- TE' FIRST(E) = FIRST(T) = FIRST(F) = {(,id}
— +TE'|e FIRST(E") = {+,¢}

- FT’ FIRST(T") = {¢}

— *FT | e FOLLOW(E) = FOLLOW(E') ={),$}

— (B)|id FOLLOW(T) = FOLLOW(T) = {+,),$}

FOLLOW(F) = {x+,),$}

Non- Input Symbol
terminal id + * () $
E E S TE' E - TFE
E' E' — +TE' E —e|E —e
T T — FT' T — FT'
T T — € T — xFT' T —e|T — ¢
F F—id F — (B)

a4

LL(1) Grammars (Example)

e Not LL(1):

E — E+T|T
T » T«F|F

F = (

E)|id

e Non-left-recursive variant, LL(1):

E
B
T
7
F

Li1 il

Nonrecursive Predicti

push $ onto stack;

push S onto stack;

let a be first symbol of input w;

let X be top stack symbol;

while (X # $) /* stack is not empty */

{if (X =na)
{ pop stack;
let a be next symbol of w;
}
else if (X is terminal)
error();
else if (M[X,a] is error entry)
error();

else if (M[X,a] =X — Y1Ys.

TE'
+TFE | e
FT'
*FT' | e
(B) |id

46

ve Parsing

Stack Predictive

EA‘ Parsing _Output |
Y] Program

g |

s}

Parsing

Table M

YY)

{ output production X — Y1Y>...Y};

pop stack;

push Y, Yi_1,...,Y7 onto stack, with Y7 on top;

}

let X be top stack symbol;

}

a8

Nonrec. Predictive Parsing (Example)

Non- Input Symbol - - - -
terminal [id ES ¥ () $ Error Recovery in Predictive Parsing
E E—TE E—TE
B E — +TE' E —e|E —e Panic-mode recovery
T T — FT’ T FT'
T T — € T — «FT' T —e|T —e
Ja Fid F - (E) e Discard input until token in set of designated synchronizing
tokens is found
Matched | Stack Input Action
E$|id+id=id$ |output E — TE’ e Heuristics

+id+id $ | output T — FT’
FT'E'$ |id +id *id $ | output F — id
idT’E'$ |id + id * id $ | match id

— Put all symbols in FOLLOW(A) into synchronizing set for
A (and remove A from stack)

id T'E'$ +idxid$ | output T/ — € — Add symbols based on hierarchical structure of language
id E'$| 4idxid$ |output E' — +TFE’ constructs
id +TE'$ +id xid $ | match + — Add symbols in FIRST(A)

— If A= ¢, use production deriving ¢ as default

id+ TE'$ id xid $ | output 7' — FT"

— Add tokens to synchronizing sets of all other tokens
Note shift up of last column

49 50

Error Recovery in Predictive Parsing Predictive Parsing Issues

Phrase-level recovery e What to do in case of multiply-defined entries?

. . . — Transform grammar
e Local correction on remaining input that allows parser to .
continue = Left-recursion e

ination

* Left factoring

Pointer to error routines in blank table entries

— Not always applicable
— Change symbols

— Insert symbols e Designing grammar suitable for top-down parsing is hard
— Delete symbols — Left-recursion elimination and left factoring make gram-

— Print appropriate message mar hard to read and to use in translation

Make sure that we do not enter infinite loop .
Therefore: try to use automatic parser generators

51 52

4.1.3 Syntax Error Handling Error Detection and Reporting

Good compiler should assist in identifying and locating errors
iable-prefix pri r f LL/LR rsers allow ion of
— Lexical errors: compiler can easily detect and continue o Viable-pre property o \ parsers allow detection o
syntax errors as soon as possible,

i.e., as soon as prefix of input does not match prefix of any
— Semantic errors: compiler can sometimes detect string in language (valid program)

— Syntax errors: compiler can detect and often recover

— Logical errors: hard to detect

e Reporting an error:

Three goals. The error handler should

— At least report line number and position
— Report errors clearly and accurately

— Recover quickly to detect subsequent errors — Print diagnostic message, e.g.,
— Add minimal overhead to processing of correct programs “semicolon missing at this position”

53 54

Error-Recovery Strategies

e Continue after error detection, A H
restore to state where processing may continue, but. .. OO_\SU__G_\ constructie

e No universally acceptable strategy,

but some useful strategies:

— Panic-mode recovery: discard input until token in desig-
nated set of synchronizing tokens is found .

— Phrase-level recovery: perform local correction on the in- Chapters for reading: 4.1-4.4
put to repair error, e.g., insert missing semicolon
Has actually been used

— Error productions: augment grammar with productions
for erroneous constructs

— Global correction: choose minimal sequence of changes Next week: also werkcollege
to obtain correct string

Costly, but yardstick for evaluating other strategies

college 3
Syntax Analysis (1)

55 56

