
Compilerconstructie

najaar 2013

http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 3, dinsdag 17 september 2013

Syntax Analysis (1)

1

4 Syntax Analysis

• Every language has rules prescribing the syntactic structure

of the programs:
– functions, made up of declarations and statements
– statements made up of expressions
– expressions made up of tokens

• Syntax of programming-language constructs can be described

by CFG
– Precise syntactic specification
– Automatic construction of parsers for certain classes of

grammars
– Structure imparted to language by grammar is useful for

translating source programs into object code
– New language constructs can be added easily

• Syntax analyis is performed by parser

2

4.1 Parser’s Position in a Compiler

-

source
program Lexical

Analyser

-
token

�

get next
token

Parser ············-

parse
tree Rest of

Frond End
-

intermediate
representation

Symbol
Table

@
@

@
@

@
@

@
@

@I@
@
@

@
@
@
@

@
@R

6

? �
�
�
�

�
�
�

�
���

�
�

�
�

�
�

�
�	

• Obtain string of tokens

• Verify that string can be generated by the grammar

• Report and recover from syntax errors

3

Parsing

Finding parse tree for given string

• Universal (any CFG)

– Cocke-Younger-Kasami

– Earley

• Top-down (CFG with restrictions)

– Predictive parsing

– LL (Left-to-right, Leftmost derivation) methods

– LL(1): LL parser, needs only one token to look ahead

• Bottom-up (CFG with restrictions)

Today: top-down parsing
Next week: bottom-up parsing

4

4.2 Context-Free Grammars

Context-free grammar is a 4-tuple with

• A set of nonterminals (syntactic variables)

• A set of tokens (terminal symbols)

• A designated start symbol (nonterminal)

• A set of productions: rules how to decompose nonterminals

Example: CFG for simple arithmetic expressions:

G = ({expr , term, factor}, {id,+,−, ∗, /, (,)}, expr , P)

with productions P :

expr → expr + term | expr − term | term

term → term ∗ factor | term/factor | factor

factor → (expr) | id

5

Notational Conventions

1. Terminals:

a, b, c, . . .; specific terminals: +, ∗, (,),0,1, id, if, . . .

2. Nonterminals:

A,B,C, . . .; specific nonterminals: S, expr , stmt, . . . , E, . . .

3. Grammar symbols: X,Y, Z

4. Strings of terminals: u, v, w, x, y, z

5. Strings of grammar symbols: α, β, γ, . . .
Hence, generic production: A → α

6. A-productions:

A → α1, A → α2, . . . , A → αk ⇒ A → α1 | α2 | . . . | αk
Alternatives for A

7. By default, head of first production is start symbol

6

Notational Conventions (Example)

CFG for simple arithmetic expressions:

G = ({expr , term, factor}, {id,+,−, ∗, /, (,)}, expr , P)

with productions P :

expr → expr + term | expr − term | term

term → term ∗ factor | term/factor | factor

factor → (expr) | id

Can be rewritten concisely as:

E → E + T | E − T | T

T → T ∗ F | T/F | F

F → (E) | id

7

Derivations

Example grammar:

E → E + E | E ∗ E | − E | (E) | id

• In each step, a nonterminal is replaced by body of one of its

productions, e.g.,

E ⇒ −E ⇒ −(E) ⇒ −(id)

• One-step derivation:

αAβ ⇒ αγβ, where A → γ is production in grammar

• Derivation in zero or more steps:
∗
⇒

• Derivation in one or more steps:
+
⇒

8

Derivations

• If S
∗
⇒ α, then α is sentential form of G

• If S
∗
⇒ α and α has no nonterminals, then α is sentence of G

• Language generated by G is L(G) = {w | w is sentence of G}

• Leftmost derivation: wAγ ⇒
lm

wδγ

• If S
∗
⇒
lm

α, then α is left sentential form of G

• Rightmost derivation: γAw ⇒
rm

γδw,
∗
⇒
rm

Example of leftmost derivation:

E ⇒
lm

−E ⇒
lm

−(E) ⇒
lm

−(E + E) ⇒
lm

−(id+ E) ⇒
lm

−(id+ id)

9

Parse Tree
(from college 1)

(derivation tree in FI2)

• The root of the tree is labelled by the start symbol

• Each leaf of the tree is labelled by a terminal (=token) or ǫ

(=empty)

• Each interior node is labelled by a nonterminal

• If node A has children X1, X2, . . . , Xn, then there must be a

production A → X1X2 . . . Xn

Yield of the parse tree: the sequence of leafs (left to right)

10

Parse Trees and Derivations

E → E + E | E ∗ E | − E | (E) | id

E ⇒
lm

−E ⇒
lm

−(E) ⇒
lm

−(E + E) ⇒
lm

−(id+ E) ⇒
lm

−(id+ id)

�
��

@
@@

�
��

@
@@

�
��

@
@@

E

− E

(E)

E + E

id id

Many-to-one relationship between derivations and parse trees. . .

11

4.3.1 Why Regular Expressions
For Lexical Syntax?

• Convenient way to modularize front end

≈ simplifies design

• Regular expressions powerful enough for lexical syntax

• Regular expressions easier to understand than grammars

• More efficient lexical analysers can be constructed automat-

ically from regular expressions than from arbitrary grammars

12

Ambiguity

More than one leftmost/rightmost derivation for same sentence

Example: a+ b ∗ c

E ⇒ E + E

⇒ id+ E

⇒ id+ E ∗ E

⇒ id+ id ∗ E

⇒ id+ id ∗ id

�
��

@
@@

�
��

@
@@

E

E + E

id E ∗ E

id ida+ (b ∗ c)

E ⇒ E ∗ E

⇒ E + E ∗ E

⇒ id+ E ∗ E

⇒ id+ id ∗ E

⇒ id+ id ∗ id

�
��

@
@@

�
��

@
@@

E

E ∗ E

E + E id

id id (a+ b) ∗ c
13

Eliminating ambiguity
• Sometimes ambiguity can be eliminated

• Example: “dangling-else”-grammar

stmt → if expr then stmt

| if expr then stmt else stmt

| other

Here, other is any other statement

if E1 then if E2 then S1 else S2

!!!!!!!

�
�

@
@

PPPPPPPP

���������

����
�
�

@
@

aaaaaa

XXXXXXXXXXXX

stmt

if expr then stmt

E1 if expr then stmt else stmt

E2 S1 S2

���������

����
�
�

@
@

aaaaaa

XXXXXXXXXXXX

�����
�

�
A
A
HHHH

stmt

if expr then stmt else stmt

E1 if expr then stmt S2

E2 S1

14

Eliminating ambiguity

Example: ambiguous “dangling-else”-grammar

stmt → if expr then stmt

| if expr then stmt else stmt

| other

Only matched statements between then and else. . .

15

Eliminating ambiguity

Example: ambiguous “dangling-else”-grammar

stmt → if expr then stmt

| if expr then stmt else stmt

| other

Equivalent unambiguous grammar

stmt → matchedstmt

| openstmt

matchedstmt → if expr then matchedstmt else matchedstmt

| other

openstmt → if expr then stmt

| if expr then matchedstmt else openstmt

Only one parse tree for
if E1 then if E2 then S1 else S2

Associates each else with closest previous unmatched then

16

2.4 Parsing (Top-Down Example)
from college 1

stmt → expr ;

| if (expr)stmt

| for (optexpr ;optexpr ;optexpr)stmt

| other

optexpr → ǫ

| expr

How to determine parse tree for

for (;expr ;expr)other

Use lookahead: current terminal in input

17

Predictive Parsing
from college 1

• Recursive-descent parsing is a top-down parsing method:

– Executes a set of recursive procedures to process the input

– Every nonterminal has one (recursive) procedure parsing

the nonterminal’s syntactic category of input tokens

• Predictive parsing . . .

18

Recursive Descent Parsing

Recursive procedure for each nonterminal

void A()

1) { Choose an A-production, A → X1X2 . . . Xk;

2) for (i = 1 to k)

3) { if (Xi is nonterminal)

4) call procedure Xi();

5) else if (Xi equals current input symbol a)

6) advance input to next symbol;

7) else /* an error has occurred */;

}

}

Pseudocode is nondeterministic

19

Recursive Descent

• One may use backtracking:

– Try each A-production in some order

– In case of failure at line 7 (or call in line 4),

return to line 1 and try another A-production

– Input pointer must then be reset,

so store initial value input pointer in local variable

• Example in book

• Backtracking is rarely needed: predictive parsing

20

Predictive Parsing
from college 1

• Recursive-descent parsing . . .

• Predictive parsing is a special form of recursive-descent pars-
ing:

– The lookahead symbol unambiguously determines the pro-
duction for each nonterminal

Simple example:

stmt → expr ;

| if (expr)stmt

| for (optexpr ;optexpr ;optexpr)stmt

| other

21

Predictive Parsing (Example)
from college 1

void stmt()
{ switch (lookahead)

{ case expr:
match(expr); match(’;’); break;

case if:
match(if); match(’(’); match(expr); match(’)’); stmt();
break;

case for:
match(for); match(’(’);
optexpr(); match(’;’); optexpr(); match(’;’); optexpr();
match(’)’); stmt(); break;

case other;
match(other); break;

default:
report("syntax error");

}
}

void match(terminal t)
{ if (lookahead==t) lookahead = nextTerminal;

else report("syntax error");
}

22

Using FIRST
from college 1

• Let α be string of grammar symbols

• FIRST(α) is the set of terminals that appear as first symbols

of strings generated from α

Simple example:

stmt → expr ;

| if (expr)stmt

| for (optexpr ;optexpr ;optexpr)stmt

| other

Right-hand side may start with nonterminal. . .

23

Using FIRST
from college 1

• Let α be string of grammar symbols

• FIRST(α) is the set of terminals that appear as first symbols

of strings generated from α

• When a nontermimal has multiple productions, e.g.,

A → α | β

then FIRST(α) and FIRST(β) must be disjoint in order for

predictive parsing to work

24

Left Recursion

• Productions of the form A → Aα | β are left-recursive

– β does not start with A

– Example: E → E + T | T

• Top-down parser may loop forever if grammar has left-recursive

productions

• Left-recursive productions can be eliminated by rewriting pro-

ductions

25

Left Recursion Elimination

Immediate left recursion

• Productions of the form A → Aα | β

• Can be eliminated by replacing the productions by

A → βA′ (A′ is new nonterminal)
A′ → αA′ | ǫ (A′ → αA′ is right recursive)

• Procedure:

1. Group A-productions as

A → Aα1 | Aα2 | . . . | Aαm | β1 | β2 | . . . | βn

2. Replace A-productions by

A → β1A
′ | β2A

′ | . . . | βnA
′

A′ → α1A
′ | α2A

′ | . . . | αmA′ | ǫ

26

Left Recursion Elimination

General left recursion

• Left recursion involving two or more steps

S → Ba | b

B → AA | a

A → Ac | Sd

• S is left-recursive because

S ⇒ Ba ⇒ AAa ⇒ SdAa (not immediately left-recursive)

27

General Left Recursion Elimination

S → Ba | b

B → AA | a

A → Ac | Sd

• We order nonterminals: S,B,A (n = 3)

• Variables may only ‘point forward’

• i = 1 and i = 2: nothing to do

• i = 3:

– substitute A → Sd

– substitute A → Bad

– eliminate immediate left-recursion in A-productions

28

General Left Recursion Elimination

Algorithm for G with no cycles or ǫ-productions

1) arrange nonterminals in some order A1, A2, . . . , An

2) for (i = 1 to n)

3) { for (j = 1 to i− 1)

4) { replace each production of form Ai → Ajγ

by the productions Ai → δ1γ | δ2γ | . . . | δkγ, where

Aj → δ1 | δ2 | . . . | δk are all current Aj-productions

5) }

6) eliminate immediate left recursion among Ai-productions

7) }

Example with A → ǫ

29

Left Factoring

Another transformation to produce grammar suitable for predic-

tive parsing

• If A → αβ1 | αβ2 and input begins with nonempty string

derived from α

How to expand A? To αβ1 or to αβ2?

• Solution: left-factoring

Replace two A-productions by

A → αA′

A′ → β1 | β2

30

Left Factoring (Example)

• Which production to choose when input token is if?

stmt → if expr then stmt

| if expr then stmt else stmt

| other

expr → b

• Or abstract:

S → iEtS | iEtSeS | a

E → b

• Left-factored: . . .

31

Left Factoring (Example)

What is result of left factoring for

S → abS | abcA | aaa | aab | aA

32

Non-Context-Free Language Constructs

• Declaration of identifiers before their use

L1 = {wcw | w ∈ {a, b}∗}

• Number of formal parameters in function declaration equals
number of actual parameters in function call
Function call may be specified by

stmt → id (expr list)

expr list → expr list, expr | expr

L2 = {anbmcndm | m,n ≥ 1}

Such checks are performed during semantic-analysis phase

33

4.4 Top-Down Parsing

• Construct parse tree,

– starting from the root

– creating nodes in preorder

Corresponds to finding leftmost derivation

34

Top-Down Parsing (Example)

•

E → E + T | T

T → T ∗ F | F

F → (E) | id

• Non-left-recursive variant: . . .

35

Top-Down Parsing (Example)
•

E → E + T | T

T → T ∗ F | F

F → (E) | id

• Non-left-recursive variant:

E → TE′

E′ → +TE′ | ǫ

T → FT ′

T ′ → ∗FT ′ | ǫ

F → (E) | id

• Top-down parse for input id+ id ∗ id . . .

• At each step: determine production to be applied

36

Top-Down Parsing

• Recursive-descent parsing

• Predictive parsing

– Eliminate left-recursion from grammar

– Left-factor the grammar

– Compute FIRST and FOLLOW

– Two variants:

∗ Recursive (recursive calls)

∗ Non-recursive (explicit stack)

37

FIRST
• Let α be string of grammar symbols

• FIRST(α) = set of terminals/tokens which begin strings de-
rived from α

• If α
∗
⇒ ǫ, then ǫ ∈ FIRST(α)

• Example

F → (E) | id

FIRST(FT ′) = {(, id}

• When nonterminal has multiple productions, e.g.,

A → α | β

and FIRST(α) and FIRST(β) are disjoint,
we can choose between these A-productions by looking at
next input symbol

38

Computing FIRST

Compute FIRST(X) for all grammar symbols X:

• If X is terminal, then FIRST(X) = {X}

• If X → ǫ is production, then add ǫ to FIRST(X)

• Repeat adding symbols to FIRST(X) by looking at produc-

tions

X → Y1Y2 . . . Yk

(see book) until all FIRST sets are stable

39

FIRST (Example)

E → TE′

E′ → +TE′ | ǫ

T → FT ′

T ′ → ∗FT ′ | ǫ

F → (E) | id

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}

FIRST(E′) = {+, ǫ}

FIRST(T ′) = {∗, ǫ}

40

FOLLOW

• Let A be nonterminal

• FOLLOW(A) is set of terminals/tokens that can appear im-

mediately to the right of A in sentential form:

FOLLOW(A) = {a | S
∗
⇒ αAaβ}

• Compute FOLLOW(A) for all nonterminals A

See book

41

FIRST and FOLLOW (Example)

E → TE′

E′ → +TE′ | ǫ

T → FT ′

T ′ → ∗FT ′ | ǫ

F → (E) | id

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}

FIRST(E′) = {+, ǫ}

FIRST(T ′) = {∗, ǫ}

FOLLOW(E) = FOLLOW(E′) = {),$}

FOLLOW(T) = FOLLOW(T ′) = {+,),$}

FOLLOW(F) = {∗,+,),$}

42

Parsing Tables

When next input symbol is a (terminal or input endmarker $),

we may choose A → α

• if a ∈ FIRST(α)

• if (α = ǫ or α
∗
⇒ ǫ) and a ∈ FOLLOW(A)

Algorithm to construct parsing table M [A, a]

for (each production A → α)
{ for (each a ∈ FIRST(α))

add A → α to M [A, a];
if (ǫ ∈ FIRST(α))
{ for (each b ∈ FOLLOW(A))

add A → α to M [A, b];
}

}
If M [A, a] is empty, set M [A, a] to error.

43

Top-Down Parsing Table (Example)

E → TE′

E′ → +TE′ | ǫ

T → FT ′

T ′ → ∗FT ′ | ǫ

F → (E) | id

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}

FIRST(E′) = {+, ǫ}

FIRST(T ′) = {∗, ǫ}

FOLLOW(E) = FOLLOW(E′) = {),$}

FOLLOW(T) = FOLLOW(T ′) = {+,),$}

FOLLOW(F) = {∗,+,),$}

Non- Input Symbol
terminal id + ∗ () $

E E → TE′ E → TE′

E′ E′ → +TE′ E′ → ǫ E′ → ǫ
T T → FT ′ T → FT ′

T ′ T ′ → ǫ T ′ → ∗FT ′ T ′ → ǫ T ′ → ǫ
F F → id F → (E)

44

LL(1) Grammars

• LL(1)
Left-to-right scanning of input, Leftmost derivation,
1 token to look ahead suffices for predictive parsing

• Grammar G is LL(1),
if and only if for two distinct productions A → α | β,
– α and β do not both derive strings beginning with same

terminal a
– at most one of α and β can derive ǫ
– if β

∗
⇒ ǫ, then α does not derive strings beginning with

terminal a ∈ FOLLOW(A)

• In other words, . . .

• Grammar G is LL(1), if and only if parsing table uniquely
identifies production or signals error

45

LL(1) Grammars (Example)

• Not LL(1):

E → E + T | T

T → T ∗ F | F

F → (E) | id

• Non-left-recursive variant, LL(1):

E → TE′

E′ → +TE′ | ǫ

T → FT ′

T ′ → ∗FT ′ | ǫ

F → (E) | id

46

Nonrecursive Predictive Parsing

Cf. top-down PDA from FI2

Stack

$

Z

Y

X

Predictive
Parsing
Program

�

?

Parsing
Table M

�
�
�
��

Input a + b $

-
Output

47

Nonrecursive Predictive Parsing

push $ onto stack;
push S onto stack;
let a be first symbol of input w;
let X be top stack symbol;
while (X 6= $) /* stack is not empty */
{ if (X = a)
{ pop stack;
let a be next symbol of w;

}
else if (X is terminal)

error();
else if (M [X, a] is error entry)

error();
else if (M [X, a] = X → Y1Y2 . . . Yk)

{ output production X → Y1Y2 . . . Yk;
pop stack;
push Yk, Yk−1, . . . , Y1 onto stack, with Y1 on top;

}
let X be top stack symbol;

}

Stack

$

Z

Y

X

Predictive
Parsing
Program

�

?

Parsing
Table M

�
�
�
��

Input a + b $

-
Output

48

Nonrec. Predictive Parsing (Example)
Non- Input Symbol

terminal id + ∗ () $
E E → TE′ E → TE′

E′ E′ → +TE′ E′ → ǫ E′ → ǫ
T T → FT ′ T → FT ′

T ′ T ′ → ǫ T ′ → ∗FT ′ T ′ → ǫ T ′ → ǫ
F F → id F → (E)

Matched Stack Input Action

E$ id+ id ∗ id $ output E → TE′

TE′$ id+ id ∗ id $ output T → FT ′

FT ′E′$ id+ id ∗ id $ output F → id
idT ′E′$ id+ id ∗ id $ match id

id T ′E′$ + id ∗ id $ output T ′ → ǫ
id E′$ + id ∗ id $ output E′ → +TE′

id +TE′$ + id ∗ id $ match +
id+ TE′$ id ∗ id $ output T → FT ′

.

Note shift up of last column

49

Error Recovery in Predictive Parsing

Panic-mode recovery

• Discard input until token in set of designated synchronizing

tokens is found

• Heuristics

– Put all symbols in FOLLOW(A) into synchronizing set for

A (and remove A from stack)

– Add symbols based on hierarchical structure of language

constructs

– Add symbols in FIRST(A)

– If A
∗
⇒ ǫ, use production deriving ǫ as default

– Add tokens to synchronizing sets of all other tokens

50

Error Recovery in Predictive Parsing

Phrase-level recovery

• Local correction on remaining input that allows parser to

continue

• Pointer to error routines in blank table entries

– Change symbols

– Insert symbols

– Delete symbols

– Print appropriate message

• Make sure that we do not enter infinite loop

51

Predictive Parsing Issues

• What to do in case of multiply-defined entries?

– Transform grammar

∗ Left-recursion elimination

∗ Left factoring

– Not always applicable

• Designing grammar suitable for top-down parsing is hard

– Left-recursion elimination and left factoring make gram-

mar hard to read and to use in translation

Therefore: try to use automatic parser generators

52

4.1.3 Syntax Error Handling

• Good compiler should assist in identifying and locating errors

– Lexical errors: compiler can easily detect and continue

– Syntax errors: compiler can detect and often recover

– Semantic errors: compiler can sometimes detect

– Logical errors: hard to detect

• Three goals. The error handler should

– Report errors clearly and accurately

– Recover quickly to detect subsequent errors

– Add minimal overhead to processing of correct programs

53

Error Detection and Reporting

• Viable-prefix property of LL/LR parsers allow detection of

syntax errors as soon as possible,

i.e., as soon as prefix of input does not match prefix of any

string in language (valid program)

• Reporting an error:

– At least report line number and position

– Print diagnostic message, e.g.,

“semicolon missing at this position”

54

Error-Recovery Strategies

• Continue after error detection,

restore to state where processing may continue, but. . .

• No universally acceptable strategy,

but some useful strategies:

– Panic-mode recovery: discard input until token in desig-

nated set of synchronizing tokens is found

– Phrase-level recovery: perform local correction on the in-

put to repair error, e.g., insert missing semicolon

Has actually been used

– Error productions: augment grammar with productions

for erroneous constructs

– Global correction: choose minimal sequence of changes

to obtain correct string

Costly, but yardstick for evaluating other strategies

55

Compiler constructie

college 3

Syntax Analysis (1)

Chapters for reading: 4.1–4.4

Next week: also werkcollege

56

