Compilerconstructie
najaar 2013
http://www.liacs.nl/home/rvvliet/coco/

Rudy van Viliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl

college 3, dinsdag 17 september 2013

Syntax Analysis (1)

4 Syntax Analysis

e Every language has rules prescribing the syntactic structure

of the programs:

— functions, made up of declarations and statements
— statements made up of expressions

— expressions made up of tokens

e Syntax of programming-language constructs can be described

by CFG
— Precise syntactic specification
— Automatic construction of parsers for certain classes of

grammars
— Structure imparted to language by grammar is useful for

translating source programs into object code
— New language constructs can be added easily

e Syntax analyis is performed by parser

4.1 Parser’s Position in a Compiler

source token
program| [exical
Anal r
AYSET | get next
token

parse

Parser

L tree

| eecccccccse >

Y

Symbol
Table

e ODbtain string of tokens

i Rest of
Frond End

intermediate
representation

L=

e Verify that string can be generated by the grammar

e Report and recover from syntax errors

Parsing

Finding parse tree for given string

e Universal (any CFQG)
— Cocke-Younger-Kasami
— Earley

e Top-down (CFG with restrictions)
— Predictive parsing
— LL (Left-to-right, Leftmost derivation) methods
— LL(1): LL parser, needs only one token to look ahead

e Bottom-up (CFG with restrictions)

Today: top-down parsing
Next week: bottom-up parsing

4.2 Context-Free Grammars

Context-free grammar is a 4-tuple with
e A set of nonterminals (syntactic variables)
e A set of tokens (terminal symbols)
e A designated start symbol (nonterminal)
e A set of productions: rules how to decompose nonterminals

Example: CFG for simple arithmetic expressions:

G = ({expr, term, factor}, {id,+,—,*,/,(,)}, expr, P)
with productions P:
expr — expr —+ term | expr — term | term

term — term x factor | term/factor | factor
factor — (expr) |id

Notational Conventions

1.

Terminals:
a,b,c,...; specific terminals: +,x*,(,),0, 1,id,if, ...

. Nonterminals:
A, B,C,..., specific nonterminals: S,expr,stmt,... E,...

3. Grammar symbols: X,Y, Z

. Strings of terminals: uw,v,w,x,y, 2z

. Strings of grammar symbols: «, 3,,...

Hence, generic production: A — «

. A-productions:
A—a, A= an,...,A— ap = A—=ay|an|...

Alternatives for A

. By default, head of first production is start symbol

| o

Notational Conventions (Example)

CFG for simple arithmetic expressions:
G = ({expr, term, factor}, {id,+,—,*,/,(,)}, expr, P)
with productions P:

expr — expr —+ term | expr — term | term
term — term x factor | term/factor | factor

factor — (expr) |id

Can be rewritten concisely as:
EFE - E4+T|E-T|T
T — TxF|T/F|F
F — (F)]id

Derivations

Example grammar:
F—-F+F | ExE | —-F | (F) | id
e In each step, a nonterminal is replaced by body of one of its
productions, e.g.,

F=—-F=—(F)= —(id)

e One-step derivation:
aAfB = ayB, where A — ~ is production in grammar

e Derivation in zero or more steps:. =

e Derivation in one or more steps: i;

Derivations
o If S = o, then « is sentential form of G
o If S= o and « has no nonterminals, then « is sentence of G

e Language generated by G is L(G) = {w | w is sentence of G}

e L eftmost derivation: wA~ l:> wory
m

o If S l:*> o, then o is left sentential form of G
m

e Rightmost derivation: vAw = vdw, =
rm rm

Example of leftmost derivation:

E= —E= —(E) = —(E+E) = —(id + E) = —(id + id)

Im Im

9

Parse Tree
(from college 1)

(derivation tree in FI2)
e [he root of the tree is labelled by the start symbol

e Each leaf of the tree is labelled by a terminal (=token) or ¢
(=empty)

e Each interior node is labelled by a nonterminal

e If node A has children X1, X»o,..., Xy, then there must be a
production A — X1 X»... Xy

Yield of the parse tree: the sequence of leafs (left to right)

10

Parse Trees and Derivations

E—-E+E | ExE | —E | (E) | id
E=—E=— (E):» (E+E):\ (Id+E):» —(id +id)
-/ \

/\\
o

Many-to-one relationship between derivations and parse trees. ..

11

4.3.1 Why Regular Expressions
For Lexical Syntax?

e Convenient way to modularize front end
~ simplifies design

e Regular expressions powerful enough for lexical syntax
e Regular expressions easier to understand than grammars

e More efficient lexical analysers can be constructed automat-
ically from regular expressions than from arbitrary grammars

12

AMmbiguity

More than one leftmost/rightmost derivation for same sentence

Example: a+bxc

EF = E+FE E = ExE
= id+4+ E = FEF+ ExE
= d+ ExFE = d+ ExFE
= id4+idx E = id+idx E
= id+idxid = id4+idxid

E

/\\ N

E * E

\ /\\ SN

id E + E id

a—+ (bx*c) id

Eliminating ambiguity
e Sometimes ambiguity can be eliminated
e Example: “dangling-else”-grammar

stmt — If expr then stmt
| if expr then stmt else stmt
| other

Here, other is any other statement

if £ then if E> then S else S5

stmt stmt

if expr then stmt iIf~expr then stmt else stmt
= N~
E1 if~expr then stmt else stmt E1 if” expr then stmt S>

E» S1 So E» S1

14

Eliminating ambiguity

Example: ambiguous “dangling-else’” -grammar

stmt — if expr then stmt
| if expr then stmt else stmt
| other

Only matched statements between then and else. ..

15

Eliminating ambiguity

Example: ambiguous “dangling-else’-grammar

stmt — if expr then stmt
| if expr then stmt else stmt
| other

Equivalent unambiguous grammar

stmt — matchedstmt
| openstmt
matchedstmt — If expr then matchedstmt else matchedstmt
other
openstmt — if expr then stmt
If expr then matchedstmt else openstmt

Only one parse tree for
if £1 then if E5> then Sq else S5
Associates each else with closest previous unmatched then

16

2.4 Parsing (Top-Down Example)

from college 1

stmt — expr ;
iIf (expr)stmt
for (optexpr ; optexpr ; optexpr)stmt
other
optexpr — ¢
| expr

How to determine parse tree for

for (; expr ;expr)other

Use lookahead: current terminal in input

17

Predictive Parsing
from college 1

e Recursive-descent parsing is a top-down parsing method:
— EXxecutes a set of recursive procedures to process the input

— Every nonterminal has one (recursive) procedure parsing
the nonterminal’s syntactic category of input tokens

e Predictive parsing ...

18

Recursive Descent Parsing

Recursive procedure for each nonterminal

void A()
1) { Choose an A-production, A = X1 X5 ... Xg;
2) for (i=1 to k)
3) {if (X; is nonterminal)

4) call procedure X;();
5) else if (X, equals current input symbol a)
6) advance input to next symbol;
7) else /* an error has occurred */;
h
h

Pseudocode is nondeterministic

19

Recursive Descent

e One may use backtracking:
— Try each A-production in some order

— In case of failure at line 7 (or call in line 4),
return to line 1 and try another A-production

— Input pointer must then be reset,
so store initial value input pointer in local variable

e Example in book

e Backtracking is rarely needed: predictive parsing

20

Predictive Parsing
from college 1

e Recursive-descent parsing . ..

e Predictive parsing is a special form of recursive-descent pars-
ing:
— The lookahead symbol unambiguously determines the pro-
duction for each nonterminal

Simple example:

stmt — expr ;

If (expr)stmt

for (optexpr ; optexpr ; optexpr)stmt
other

21

Predictive Parsing (Example)
from college 1

void stmt ()
{ switch (lookahead)
{ case expr:
match(expr); match(’;’); break;
case if:
match(if); match(’(’); match(expr); match(’)’); stmt();
break;
case for:
match(for); match(’(’);
optexpr(); match(’;’); optexpr(); match(’;’); optexpr();
match(’)’); stmt(); break;
case other;
match(other); break;
default:
report ("syntax error");
}
+

void match(terminal t)
{ if (lookahead==t) lookahead = nextTerminal;
else report("syntax error");

X
22

Using FIRST

from college 1
e Let o be string of grammar symbols

e FIRST («) is the set of terminals that appear as first symbols
of strings generated from «

Simple example:

stmt — expr ;

iIf (expr)stmt

for (optexpr ; optexpr ; optexpr)stmt
other

Right-hand side may start with nonterminal. ..
23

Using FIRST

from college 1
o Let o be string of grammar symbols

e FIRST («) is the set of terminals that appear as first symbols
of strings generated from «

e \WWhen a nontermimal has multiple productions, e.g.,

A= al|p

then FIRST («) and FIRST(B8) must be disjoint in order for
predictive parsing to work

24

Left Recursion

e Productions of the form A — Aa | B are left-recursive
— B does not start with A

— Example: E—-FE+T|T

e [op-down parser may loop forever if grammar has left-recursive
productions

e Left-recursive productions can be eliminated by rewriting pro-
ductions

25

Left Recursion Elimination

Immediate left recursion
e Productions of the form A — Aa | 8
e Can be eliminated by replacing the productions by

A — BA (A’ is new nonterminal)
Al — aAlle (A" — oA’ is right recursive)

e Procedure:

1. Group A-productions as

A — Aaq|Aas|...|Aam |B1|B2]|--.| Bn

2. Replace A-productions by

A = 1A A" | ... | BpA
A — a1 A as A amA €

26

Left Recursion Elimination

General left recursion

e Left recursion involving two or more steps

S — Balb
B — AAla
A — Ac| Sd

e S is left-recursive because

S = Ba = AAa = SdAa (not immediately left-recursive)

27

General Left Recursion Elimination

S — Bal|b
B — AAla
A — Ac| Sd

We order nonterminals: S, B, A (n = 3)
Variables may only ‘point forward’
1 =1 and 7+ = 2: nothing to do

1 = 3.

— substitute A — Sd

— substitute A — Bad

— eliminate immediate left-recursion in A-productions

28

General Left Recursion Elimination
Algorithm for G with no cycles or e-productions

1) arrange nonterminals in some order Ay, Ao, ..., Apn

2) for (i =1 to n)

3) {for (j=1toi—1)

4) { replace each production of form A; — Ajy
by the productions A; — d17v | d>y | ... | Iy, where
Aj— 01|62 |...|d are all current Aj;-productions

5) '}

6) eliminate immediate left recursion among A;-productions

7) }

Example with A — ¢
29

Left Factoring

Another transformation to produce grammar suitable for predic-
tive parsing

o If A —» afB1 | aB> and input begins with nonempty string
derived from «

How to expand A? To afi or to afBr?

e Solution: left-factoring
Replace two A-productions by

A — aA
A" = B1| B

30

Left Factoring (Example)

e \Which production to choose when input token is if?

stmt — If expr then stmt
| if expr then stmt else stmt

| other
expr — b

e Or abstract:

S — iEtS|iEtSeS | a
E — b

e Left-factored: ...

31

Left Factoring (Example)

What is result of left factoring for

S —abS | abcA | aaa | aab | aA

32

Non-Context-Free Language Constructs

e Declaration of identifiers before their use
L1 = {wcw | w € {a,b}*}

e Number of formal parameters in function declaration equals
number of actual parameters in function call
Function call may be specified by

stmt — id (expr_list)
expr_list — expr_list, expr | expr

Ly = {a"b"c"d™ | m,n > 1}

Such checks are performed during semantic-analysis phase
33

4.4 Top-Down Parsing

e Construct parse tree,
— starting from the root
— creating nodes in preorder

Corresponds to finding leftmost derivation

34

Top-Down Parsing (Example)

E — E4T|T
T — TxF|F
F — (F)]|id

e Non-left-recursive variant: ...

35

Top-Down Parsing (Example)

E —- E4T|T
T — TxF|F
F — (F)|id
e Non-left-recursive variant:

E — TE'

E' — +TFE'|e
T — FT'

T — *FT'|e€
F — (F)]|id

e [Top-down parse for input id+i1d xid . ..
e At each step: determine production to be applied

36

Top-Down Parsing

e Recursive-descent parsing

e Predictive parsing

Eliminate left-recursion from grammar
Left-factor the grammar
Compute FIRST and FOLLOW

Two variants:
x Recursive (recursive calls)

* Non-recursive (explicit stack)

37

FIRST

o Let o« be string of grammar symbols

e FIRST (a) = set of terminals/tokens which begin strings de-
rived from o«

e If @ = ¢, then e € FIRST ()
e Example
F — (F)]id
FIRST(FT") = {(,id}
e \WWhen nonterminal has multiple productions, e.g.,

A—alp

and FIRST («) and FIRST(B) are disjoint,
we can choose between these A-productions by looking at
next input symbol

338

Computing FIRST

Compute FIRST(X) for all grammar symbols X:
e If X is terminal, then FIRST(X) = {X}
e If X — ¢ is production, then add € to FIRST(X)

e Repeat adding symbols to FIRST(X) by looking at produc-
tions

X —=>Y1Y>... Yk
(see book) until all FIRST sets are stable

39

FIRST (Example)

TE'
+TE' | €
FT’
«FT |
(E) |id

~
A

FIRST(F) = FIRST(T) =FIRST(F) = {(,id}
FIRST(E') = {+,¢)
FIRST(T") = {*, ¢}

40

FOLLOW

e Let A be nonterminal

e FOLLOW(A) is set of terminals/tokens that can appear im-
mediately to the right of A in sentential form:

FOLLOW(A) ={a | S = aAaB}

e Compute FOLLOW(A) for all nonterminals A
See book

41

FIRST and FOLLOW (Example)

FIRST(E)
FIRST(E')
FIRST(T")
FOLLOW(E)
FOLLOW(T)
FOLLOW(F)

E
El
T
T/
F

A A

TE'
+TE' | €
FT’
«FT |
(E) | id

FIRST(T) = FIRST(F) = {(,id}

i+ ¢}

{*, €}
FOLLOW(E') = {), $}
FOLLOW(T) = {+,),$}

{*,+,), %}

42

Parsing Tables

When next input symbol is a (terminal or input endmarker $),
we may choose A — «

o if a € FIRST (o)
o if (@a=¢cora=c¢) and a € FOLLOW(A)

Algorithm to construct parsing table M[A, a]

for (each production A — «)
{ for (each a € FIRST («))
add A — a to M[A,a];
if (e € FIRST («))
{ for (each b € FOLLOW(A))
add A — o to M[A,b];

}
}

If M[A,a] is empty, set M[A,a] to error.

43

Top-Down Parsing Table (Example)

— TF' FIRST(E) = FIRST(T) =FIRST(F) = {(,id}
— 4TE'|¢ FIRST(E") = {+,¢}
~ BT’ FIRST(T) = {x,¢}
— «FT | ¢ FOLLOW(E) = FOLLOW(E") ={),$}
5 (E)|id FOLLOW(T) = FOLLOW(T") ={+,),$}
FOLLOW(F) = {x,+,),%}
Non- Input Symbol
terminal id 4 * () $
E E —TE' E — TE'
E’ E'— 4+TFE' EF' s e|FE — ¢
T T — FT' T — FT'
T! T — € T — xFT’ T —e| T — ¢
F F —id F — (F)

44

LL(1) Grammars

e LL(1)
Left-to-right scanning of input, Leftmost derivation,
1 token to look ahead suffices for predictive parsing

e Grammar G is LL(1),
if and only if for two distinct productions A — « | 5,
— « and g do not both derive strings beginning with same
terminal a
— at most one of o and S can derive ¢
— if B = e, then o does not derive strings beginning with
terminal a € FOLLOW(A)

e In other words, . ..

e Grammar G is LL(1), if and only if parsing table uniquely
identifies production or signals error

45

LL(1) Grammars (Example)

e Not LL(1):

E - E+T|T
T — TxF|F
F — (F)]|id

e Non-left-recursive variant, LL(1):

E
B
T
!
F

4Ll

TE'
+TE' | ¢
FT’
«FT |
(E) | id

46

Nonrecursive Predictive Parsing

Cf. top-down PDA from FI2

Input al+|b|$
Stack Predic_tive Output
X |-——| Parsing -
Y Program
; |
$
Parsing

Table M

Nonrecursive Predictive Parsing

push $ onto stack;

a
push S onto stack; input aniAL
let ¢ be first symbol of input w; /
let X be top stack symbol;
while (X # $) /* stack is not empty */ Stack Predictive| -
. . utput
{if (X =a) X |<——| Parsing :
{ pop stack; % Program
let a be next symbol of w; 7
} |
else if (X is terminal) $
error(); Parsing
else if (M[X,a] is error entry) Table M
error();

else if (M[X,a] =X — Y1Y>...Y})
{ output production X — Y1Y5...Y};
pop stack;
push Yz, Y._1,...,Y7: onto stack, with Y; on top;

}

let X be top stack symbol;

}

48

Nonrec. Predictive Parsing (Example)

Non- Input Symbol
terminal id + * () $
E E —-TFE E —-TFE
E’ E' — +TF F' el B — €
T T — T’ T — T’
T’ T — € T — xF'T' T — e | T — €
F F —id F — (F)
Matched | Stack Input Action

E$|lid+id«id$ | output E — TE'
TE'$ |id+id xid $ | output T"— FT"
FT'E'$ |id +id xid $ | output F — id
idT'E’$ |id +id «id $ | match id

id T'E'$ +id «id $ | output 77 — ¢

id E'$ +id xid $ | output E/ — 4+TF'
id +TE'$ +id xid $ | match +

id+ TE'$ id«id $ | output T — FT’

Note shift up of last column
49

Error Recovery In Predictive Parsing

Panic-mode recovery

e Discard input until token in set of designated synchronizing
tokens is found

e Heuristics

— Put all symbols in FOLLOW(A) into synchronizing set for
A (and remove A from stack)

— Add symbols based on hierarchical structure of language
constructs

— Add symbols in FIRST(A)
—IfAS €, use production deriving € as default
— Add tokens to synchronizing sets of all other tokens

50

Error Recovery In Predictive Parsing
Phrase-level recovery

e Local correction on remaining input that allows parser to
continue

e Pointer to error routines in blank table entries
— Change symbols
— Insert symbols
— Delete symbols

— Print appropriate message

e Make sure that we do not enter infinite loop

51

Predictive Parsing Issues

e \What to do in case of multiply-defined entries?

— Transform grammar
x Left-recursion elimination

x Left factoring

— Not always applicable

e Designing grammar suitable for top-down parsing is hard

— Left-recursion elimination and left factoring make gram-
mar hard to read and to use in translation

Therefore: try to use automatic parser generators
52

4.1.3 Syntax Error Handling

e Good compiler should assist in identifying and locating errors
— Lexical errors: compiler can easily detect and continue
— Syntax errors: compiler can detect and often recover
— Semantic errors: compiler can sometimes detect

— Logical errors: hard to detect

e [hree goals. The error handler should
— Report errors clearly and accurately
— Recover quickly to detect subsequent errors

— Add minimal overhead to processing of correct programs

53

Error Detection and Reporting

e Viable-prefix property of LL/LR parsers allow detection of
syntax errors as soon as possible,

i.e., as soon as prefix of input does not match prefix of any
string in language (valid program)

e Reporting an error:
— At least report line number and position

— Print diagnostic message, e.d.,
“semicolon missing at this position”

54

Error-Recovery Strategies

e Continue after error detection,
restore to state where processing may continue, but. ..

e NO universally acceptable strategy,
but some useful strategies:

Panic-mode recovery: discard input until token in desig-
nated set of synchronizing tokens is found

Phrase-level recovery: perform local correction on the in-
put to repair error, e.d., insert missing semicolon

Has actually been used

Error productions: augment grammar with productions
for erroneous constructs

Global correction: choose minimal sequence of changes
to obtain correct string

Costly, but yardstick for evaluating other strategies

55

Compiler constructie

college 3
Syntax Analysis (1)

Chapters for reading: 4.1-4.4

Next week: also werkcollege

56

