
Compilerconstructie

najaar 2012

http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs.nl

werkcollege 9, dinsdag 27 november 2012

SLR Parsing / Backpatching

1

FIRST
• Let α be string of grammar symbols

• FIRST(α) = set of terminals/tokens which begin strings de-
rived from α

• If α
∗
⇒ ǫ, then ǫ ∈ FIRST(α)

• Example

F → (E) | id

FIRST(FT ′) = {(, id}

• When nonterminal has multiple productions, e.g.,

A → α | β

and FIRST(α) and FIRST(β) are disjoint,
we can choose between these A-productions by looking at
next input symbol

2

Computing FIRST

Compute FIRST(X) for all grammar symbols X:

• If X is terminal, then FIRST(X) = {X}

• If X → ǫ is production, then add ǫ to FIRST(X)

• Repeat adding symbols to FIRST(X) by looking at produc-

tions

X → Y1Y2 . . . Yk

(see book) until all FIRST sets are stable

3

FIRST (Example)

E → TE′

E′ → +TE′ | ǫ

T → FT ′

T ′ → ∗FT ′ | ǫ

F → (E) | id

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}

FIRST(E′) = {+, ǫ}

FIRST(T ′) = {∗, ǫ}

4

FOLLOW

• Let A be nonterminal

• FOLLOW(A) is set of terminals/tokens that can appear im-

mediately to the right of A in sentential form:

FOLLOW(A) = {a | S
∗
⇒ αAaβ}

• Compute FOLLOW(A) for all nonterminals A

See book

5

FIRST and FOLLOW (Example)

E → TE′

E′ → +TE′ | ǫ

T → FT ′

T ′ → ∗FT ′ | ǫ

F → (E) | id

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}

FIRST(E′) = {+, ǫ}

FIRST(T ′) = {∗, ǫ}

FOLLOW(E) = FOLLOW(E′) = {),$}

FOLLOW(T) = FOLLOW(T ′) = {+,),$}

FOLLOW(F) = {∗,+,),$}

6

Parse Trees and Derivations

E ⇒
lm

−E ⇒
lm

−(E) ⇒
lm

−(E + E) ⇒
lm

−(id+ E) ⇒
lm

−(id+ id)

�
��

@
@@

�
��

@
@@

�
��

@
@@

E

− E

(E)

E + E

id id

Leftmost derivation ≈ WLR construction tree
≈ top-down parsing

Rightmost derivation ≈ WRL construction tree
Bottom-up parsing ≈ LRW construction tree

≈ rightmost derivation in reverse

7

LR Parsing

Stack

s0

s1

. . .

sm−1

sm

X1

. . .

Xm−1

Xm

LR
Parsing
Program

�

�
�
�
��

C
C
C
CW

ACTION GOTO

Parsing table

6

Input a1 . . . ai . . . an $

-
Output

8

Simple LR Parsing

States are sets of LR(0) items

Production A → XY Z yields four items:

A → ·XY Z

A → X ·Y Z

A → XY ·Z

A → XY Z ·

Item indicates how much of production we have seen in input

LR(0) items are combined in sets

Canonical LR(0) collection is specific collection of item sets

These item sets are the states in LR(0) automaton,

a DFA that is used for making parsing decisions

9

Closure of Item Sets

• – Consider A → α·Bβ

– We expect to see substring derivable from Bβ,

with prefix derivable from B, by applying B-production

– Hence, add B → ·γ for all B → γ

• Let I be item set

1. Add every item in I to CLOSURE(I)

2. Repeat

If A → α ·Bβ is in CLOSURE(I) and B → γ is produc-

tion, then add B → ·γ to CLOSURE(I)

until no more new items are added

10

LR(0) Automaton (Example)

I0

E′ → ·E

E → ·E + T

E → ·T

T → ·T ∗ F

T → ·F

F → ·(E)

F → · id

-E
I1

E′ → E ·

E → E · + T

-
+

I6

E → E + ·T

T → ·T ∗ F

T → ·F

F → ·(E)

F → · id

-T
I2

E → T ·

T → T · ∗ F

& -id
I5

F → id ·

& -F
I3

T → F ·

-
∗

I7

T → T ∗ ·F

F → ·(E)

F → · id

-F
I10

T → T ∗ F ·�
�� id

?$

accept

And some more states

and transitions. . .

11

Possible Actions in SLR Parsing

For state i and input symbol a,

• if [A → α·aβ] is in Ii and GOTO(Ii, a) = Ij
then shift j is possible

(a must be terminal, not $)

• if [A → α·] is in Ii and a ∈ FOLLOW(A),

then reduce A → α is possible (A may not be S′)

• if [S′ → S·] is in Ii and a = $, then accept is possible

If conflicting actions result from this, then grammar is not SLR(1)

12

Behaviour of LR Parser

LR parser configuration is pair (stack contents, remaining input):

(s0s1s2 . . . sm, aiai+1 . . . an$)

which represents right-sentential form

X1X2 . . . Xmaiai+1 . . . an

1. If ACTION[sm, ai] = shift s, then push s and advance input:

(s0s1s2 . . . sms, ai+1 . . . an$)

2. If ACTION[sm, ai] = reduce A → β, where |β| = r, then pop
r symbols. If GOTO[sm−r, A] = s, then push s:

(s0s1s2 . . . sm−rs, aiai+1 . . . an$)

3. If ACTION[sm, ai] = accept, then stop

4. If ACTION[sm, ai] = error, then call error recovery routine

13

SLR Parsing Table (Example)

(1) E → E + T
(2) E → T
(3) T → T ∗ F
(4) T → F
(5) F → (E)
(6) F → id

State ACTION GOTO
id + ∗ () $ E T F

0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Blank means error

Line Stack Symbols Input Action

(1) 0 $ id ∗ id$ shift to 5
(2) 05 $id ∗id$ reduce by F → id
(3) 03 $F ∗id$. . .

14

Exercise

(Derived from problem 1b from exam, 29 January 2002)

• Determine FIRST and FOLLOW for nonterminals

• Construct LR(0) automaton

• Construct parsing table

• Parse the string p q +− p

15

6.7 Backpatching

• Code generation problem:

– Labels (addresses) that control must go to may not be
known at the time that jump statements are generated

• One solution:

– Separate pass to bind labels to addresses

• Other solution: backpatching

– Generate jump statements with empty target

– Add such statements to a list

– Fill in labels when proper label is determined

16

Backpatching

• Synthesized attributes B.truelist, B.falselist, S.nextlist con-

taining lists of jumps

• Three functions

1. makelist(i) creates new list containing index i

2. merge(p1, p2) concatenates lists pointed to by p1 and p2

3. backpatch(p, i) inserts i as target label for each instruction

on list pointed to by p

17

Translation Scheme for Backpatching

(Boolean Expressions)

B → B1||MB2 { backpatch(B1.falselist,M.instr);
B.truelist = merge(B1.truelist, B2.truelist); }
B.falselist = B2.falselist;

B → B1&&MB2 { backpatch(B1.truelist,M.instr);
B.truelist = B2.truelist;
B.falselist = merge(B1.falselist, B2.falselist); }

B → (B1) { B.truelist = B1.truelist;
B.falselist = B1.falselist; }

B → E1 rel E2 { B.truelist = makelist(nextinstr);
B.falselist = makelist(nextinstr +1);
gen(′if′ E1.addr rel.op E2.addr

′goto ′);
gen(′goto ′); }

M → ǫ { M.instr = nextinstr ; }

18

Exercise

(Derived from problem 6.7.1(a) from second edition book)

• Construct the parse tree for the following boolean expression:

a==b && (c==d || e==f)

• Using the translation scheme of Fig. 6.43, translate the
above expression.
Show the true and false lists for each subexpression.
You may assume the address of the first instruction gener-
ated is 100.

The semantic actions needed from Fig. 6.43 are listed in the
previous slide. They are also listed in the next slide, with a
different numbering of the variables. This numbering may be
more useful for the exercise.

19

Translation Scheme for Backpatching

(Boolean Expressions)

B3 → B4||M2B5 { backpatch(B4.falselist,M2.instr);
B3.truelist = merge(B4.truelist, B5.truelist); }
B3.falselist = B5.falselist;

B → B1&&M1B2 { backpatch(B1.truelist,M1.instr);
B.truelist = B2.truelist;
B.falselist = merge(B1.falselist, B2.falselist); }

B2 → (B3) { B2.truelist = B3.truelist;
B2.falselist = B3.falselist; }

B → E1 rel E2 { B.truelist = makelist(nextinstr);
B.falselist = makelist(nextinstr +1);
gen(′if′ E1.addr rel.op E2.addr

′goto ′);
gen(′goto ′); }

M → ǫ { M.instr = nextinstr ; }

20

Translation Scheme for Backpatching

(Flow-of-Control Statements)

S → if (B) MS1 { backpatch(B.truelist,M.instr);
S.nextlist = merge(B.falselist, S1.nextlist); }

S → {L} { S.nextlist = L.nextlist; }
S → A; { S.nextlist = null; }
M → ǫ { M.instr = nextinstr ; }
L → L1MS { backpatch(L1.nextlist,M.instr);

L.nextlist = S.nextlist; }
L → S { L.nextlist = S.nextlist; }

21

Exercise

(Extension of problem 6.7.1(a) from second edition book)

• Construct the parse tree for the following ‘program’:

{ if (a==b && (c==d || e==f)) x=1; y=x+1 }

• Using the translation scheme of Fig. 6.43 and Fig. 6.46,
translate the above program.
Show the next list for each statement or statement list.
You may assume the address of the first instruction generated
is 100.

The semantic actions needed from Fig. 6.46 are listed in the
previous slide. They are also listed in the next slide, with a
different numbering of the variables. This numbering may be
more useful for the exercise.

22

Translation Scheme for Backpatching

(Flow-of-Control Statements)

S2 → if (B) M4S3 { backpatch(B.truelist,M4.instr);
S2.nextlist = merge(B.falselist, S3.nextlist); }

S → {L} { S.nextlist = L.nextlist; }
S3 → A1; { S.nextlist = null; }
M → ǫ { M.instr = nextinstr ; }
L → L1M3S1 { backpatch(L1.nextlist,M3.instr);

L.nextlist = S1.nextlist; }
L1 → S2 { L1.nextlist = S2.nextlist; }

23

En verder. . .

• Dinsdag 4 december: practicum over opdracht 4

• Maandag 10 december: inleveren opdracht 4

• Vrijdag 21 december, 10:00 – 13:00: tentamen

• Tevoren: vragenuur?

24

Compiler constructie

werkcollege 9

SLR Parsing / Backpatching

Chapters for reading:

4.4.2, 4.5, 4.6, 6.7

25

