Compilerconstructie

najaar 2012

.liacs.nl/home/rvvliet/coco/

Rudy van Vliet
Snellius, tel. 071-527 5777
rvvliet(at)liacs.nl

college 8, dinsdag 13 november 2012

Code Optimization

I The Principal Sources Optimization

Causes of redundancy

- At source level
- Side effect of high-level programming language, e.g., A[i][j]

D Running Example: Quicksort

```
void quicksort (int m, int n)
/* recursively sorts a[m] through a[n] */
                                                                               i = m-1; j = n; v = a[n];
while (1)
{ do i = i+i; while (a[i] < v);
    do j = j-i; while (a[j] > v);
    if (i >= j) break; a[j]; a[j] = x; /*
                                                                                                                                                                                                                                                                                          int i, j; int v, x;
quicksort(m,j); quicksort(i+1,n);
                                           a[i]; a[i] = a[n]; a[n] = x; /* swap a[i], a[n] */
```

Three-Address Code Quicksort

```
j = m-1

t1 = 4*n

t1 = 4*n

t1 = 4*i

t2 = 4*i

t2 = 4*i

t2 = 4*i

t4 = 4*j

t5 = 3[t4]

t6 = a[t4]

t6 = 4*i

t6 = 4*i

t7 = 3[t6]
                                                                      65)
t7 = 4*i
t8 = 4*j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
goato (5)
t11 = 4*i
x = a[t1]
t13 = 4*i
t13 = 4*i
t14 = a[t13]
a[t16] = t14
t15 = 4*n
a[t16] = t14
t15 = 4*n
```


Code Motion

- loop-invariant computation
- compute before loop
- Example

while (i <= limit-2) /* statement does not change limit */

After code-motion

t = 1 mit - 2 while (i <= t) /* statement does not change limit or t */

14

Induction Variables and Reduction in Strength

- \bullet Induction variable: each assignment to x of form x=x+c
- Reduction in strength: replace expensive operation by cheaper one

9.2 Introduction to Data-Flow Analysis

- Optimizations depend on data-flow analysis, e.g.,
- Global common subexpression elimination
- Dead-code elimination
- Execution path yields program state
- Extract information from program state for data-flow analysis $% \left\{ 1\right\} =\left\{ 1$
- Usually infinite number of execution paths / program states
- Different analyses extract different information

19

Data-Flow Analysis (Examples)

Extract information from program states at program point

- Reaching definitions: which definitions (assignments of values) of variable a reach program point?
- Useful for constant folding Can variable \boldsymbol{x} only have one constant value at program

20

Computing Reaching Definitions

- Reaching definitions Before B_1 : \emptyset • After B_1 : $\{d_1, d_2, d_3\}$ • Before B_2 : . . .
- B_4

 $kiII_B$

Ш

21

Computing Reaching Definitions

Effect of single definition $d: u = v \ op \ w$:

$$- gen_d = \{d\}$$

- $kill_d = \{$ all other definitions of u in program $\}$

 $gen_B =$
$$\begin{split} &\{n,n-1,\dots,1\}-\{\text{ definitions killed afterwards }\}\\ &gen_n\cup(gen_{n-1}-kill_n)\cup(gen_{n-2}-kill_{n-1}-kill_n)\\ &kill_1\cup kill_2\cup\dots\cup kill_n \end{split}$$

· $kill_n)$. . .

Effect of block B, with definitions $1, 2, \ldots, n$:

22

Computing Reaching Definitions

```
d_1: i = m-1
d_2: j = n
d_3: a = u1
                                   d<sub>5</sub>:
B_4
                                       B_2
                                                            B_1
```

```
gen_{B_1} = \{d_1, d_2, d_3\}

kill_{B_1} = \{d_4, d_5, d_6, d_7\}
```

$$gen_{B_{i}} = \{d_{1}, d_{2}, d_{3}, d_{5}\}$$

$$kll_{B_{i}} = \{d_{4}, d_{5}, d_{6}\}$$

$$gen_{B_{i}} = \{d_{1}, d_{2}, d_{7}\}$$

$$kll_{B_{2}} = \{d_{5}\}$$

$$gen_{B_{i}} = \{d_{6}\}$$

$$kll_{B_{i}} = \{d_{3}\}$$

$$gen_{B_{i}} = \{d_{7}\}$$

$$kll_{B_{i}} = \{d_{1}, d_{4}\}$$

Iterative Algorithm for Computing Reaching Definitions

```
while (changes to any OUT occur) for each basic block B other than ENTRY \{ IN[B] = \cup_{predecessors\ P} \ of\ BOUT[P] \}
                                                                                                                                                                                  OUT[ENTRY] = \emptyset for each basic block B other than ENTRY OUT[B] = \emptyset
\mathsf{OUT}[B] = gen_B \cup (\mathsf{IN}[B] - kill_B)
```

Typical form of algorithm for forward data-flow analysis

Example with $B=B_1,B_2,B_3,B_4,\mathsf{EXIT}$.

24

Implementation of Iterative Algorithm for Computing Reaching Definitions

With bit vectors

EXIT	B_4	B_3	B_2	B_1	Block B
			0000 0000		$OUT[B]^{c}$
_	_	_	111 0000	_	$IN[B]^{\perp}$
001 0111	001 0111	000 1110	001 1100	111 0000	$OUT[B]^{\perp}$
001 0111	001 1110	001 1110	111 0111	0000 0000	$IN[B]^{\epsilon}$
			001 1110		$OUT[B]^{2}$

25

Live-Variable Analysis

- $\bullet \ \, \text{Variable } x \text{ is live at program point } p, \\ \text{if value of } x \text{ at } p \text{ could be used later along } some \text{ path}$
- ullet Otherwise x is dead at p
- Information useful for register allocation (see college 7)
- Information about later use must be propagated backwards

26

Live-Variable Analysis

- ullet Effect of block B on live variables
- def_B : variables defined in B
- use_B : variables that may be used in B prior to any definition in B

27

28

Computing Liveness

Iterative Algorithm for Computing Liveness

```
\begin{split} & \text{IN}[\mathsf{EXTT}] = \emptyset \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text{ other than EXIT} \\ & \text{for each basic block } B \text
```

Typical form of algorithm for backward data-flow analysis

29

Available expressions

- ullet Is (value of) expression x op y available?
- Useful for global common subexpression elimination
- Can be decided with data-flow analysis (not for exam)

Efficient Iterative Data-Flow Analysis

Order of blocks in second for-loop matters

while (changes to any OUT occur) for each basic block B other than ENTRY $\{ IN[B] = \cup_{predecessors P \text{ of } B} OUT[P] \}$

 $\mathsf{OUT}[B] = gen_B \cup (\mathsf{IN}[B] - kill_B)$

 $\begin{array}{ll} {\rm OUT}[{\rm ENTRY}] = \emptyset \\ {\bf for} \ {\rm each} \ {\rm basic} \ {\rm block} \ B \ {\rm other} \ {\rm than} \ {\rm ENTRY} \\ {\rm OUT}[B] = \emptyset \end{array}$

Example: computing reaching definitions

Efficient Iterative Data-Flow Analysis

Order of blocks in second for-loop matters

9.6 Loops in Flow Graphs

- Optimizations of loops have significant impact
- Essential to identify loops

33

Dominators:

Dominators

- Node d dominates node n if every path from ENTRY node to n goes through $d\!\colon d$ dom n
- Node n dominates itself
- Loop entry dominates all nodes in loop
- Immediate dominator m of n: last dominator on (any) path from ENTRY node to n
- if $d \neq n$ and d dom n, then d dom m

34

Dominators (Example)

85

36

Dominator Trees (Example)

Finding Dominators

Forward data-flow analysis

N is set of all nodes

while (changes to any OUT occur)
for each node n other than ENTRY $\{ IN[n] = \bigcap_{\text{predecessors } m} \text{ of } {}_{n}\text{OUT}[m]$ OUT[ENTRY] = {ENTRY} for each node n other than ENTRY OUT[n] = N

 $\mathsf{OUT}[n] = \mathsf{IN}[n] \cup \{n\}$

Depth-First Traversal

- Depth-first traversal of graph
- Start from entry node
- Recursively visit neighbours (in any order)
- Hence, visit nodes far away from the entry node as quickly as it can (DF) $\,$

A Depth-First Spanning Tree

- Advancing edgesRetreating edgesCross edges

- Back edge $a \rightarrow b$,
- if b dominates a (regardless of DFST)

 Each back edge is retreating edge in DFST Flow graph is reducible. any DFST is back edge if each retreating edge in

(Non)Reducible flow graphs

- In practice, almost every flow graph is reducible
- Example of nonreducible flow graph (with advancing edges)
- To decide on reducibility:
- Remove back edges
- 2. Is remaining graph acyclic?

41

Natural Loops (Example)

43

Natural Loops

- Useful property: unless two natural loops have same header
- either they are disjoint
- or one is nested within other

Allows for inside-out optimization

Assumption: if necessary, combine natural loops with same

45

Depth of Flow Graph

- Depth of DFST is largest number of retreating edges on any cycle-free path
- If flow graph is reducible, then depth is independent of DFST: depth of flow graph $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($
- \bullet Depth \leq depth of loop nesting in flow graph

Natural loops

- \bullet If loop has single-entry node, then compiler can assume initial certain conditions
- Natural loop
- 1. Has single-entry node: header
- 2. Has back edge to header
- \bullet Each back edge $n \to d$ determines natural loop, consisting of
- all nodes that can reach \boldsymbol{n} without going through \boldsymbol{d}
- Constructing natural loop of back edge.

42

No Natural Loops

4

A Depth-First Ordering

- in WRL order pprox reverse of postorder Depth-First Ordering: nodes in DFST

Example:

1,2,3,4,5,6,7,8,9,10 • Edge $m \rightarrow n$ is retreating, if and only if n comes before m in depth-first ordering

46

Depth of Flow Graph (Example)

Depth is 3, because of path $10 \rightarrow 7 \rightarrow 4 \rightarrow 3$

Speed of Convergence of Iterative Data-Flow Algorithms

- Yes for
- Reaching definitions
- Live-variable analysis
- Available expressions
- No for
- Copy propagation

If yes, then fast convergence possible

49

Fast Convergence

- Forward data-flow problem: visit nodes in depth-first-order
- Recall: edge $m \to n$ is retreating, if and only if n comes before m in depth-first ordering
- ullet Example: path of propagation of definition d:

```
3 \rightarrow 5 \rightarrow 19 \rightarrow 35 \rightarrow 16 \rightarrow 23 \rightarrow 45 \rightarrow 4 \rightarrow 10 \rightarrow 17
```

- ullet Number of iterations: 1 + depth (+1)
- Typical flow graphs have depth 2.75
- Backward data-flow problem: visit nodes in reverse of depth-first-order

51

Efficient Iterative Data-Flow Analysis

OUT[ENTRY] = \emptyset for each basic block B other than ENTRY OUT[B] = \emptyset Example: computing reaching definitions

while (changes to any OUT occur) for each basic block B other than ENTRY $\{N[B] = \bigcup_{predecessors P \text{ of } B} OUT[P]$ $\mathsf{OUT}[B] = gen_B \cup (\mathsf{IN}[B] - kill_B)$

Order of blocks in second for-loop matters

50

En verder...

- Maandag 19 november: inleveren opdracht 3
- Dinsdag 20 november: practicum over opdracht 4
- Eerst naar 403, daarna naar 302/304
- Inleveren 10 december
- Dinsdag 27 november: werkcollege in 403 (dus geen hoorcollege over Daedalus)
- Dinsdag 4 december: practicum over opdracht 4

52

Compiler constructie

college 8 Code Optimization

Chapters for reading: 9.intro, 9.1, 9.2–9.2.5, 9.6