Compilerconstructie
najaar 2012
http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs.nl

college 8, dinsdag 13 november 2012

Code Optimization

9.1 The Principal Sources
of Optimization

Causes of redundancy
e At source level

e Side effect of high-level programming language, e.g., Ali][j]

A Running Example: Quicksort

void quicksort (int m, int n)
/* recursively sorts alm] through a[n] */

{
int i, j;
int v, X;

if (n <= m) return;

i =m-1; j =n; v = aln];

while (1)
{ do i = i+1; while (al[i] < v);
do j = j-1; while (al[j]l > v);

if (i >= j) break;

x = al[il; alil = aljl; aljl = x; /* swap alil, alj]l */
+
x = al[il; al[i] = al[n]; aln] = x; /* swap al[il], al[n] */

quicksort(m,j); quicksort(i+1i,n);

Three-Address Code Quicksort

Il

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

if t3<v goto (5)
j =731

t4 = 4%j

t5 = al[t4]

if t5>v goto (9)
if i>=j goto (23)
t6 = 4%*i

x = al[t6]

(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

t7 4xi

£8 = 4%]

t9 = a[t8]
alt7] = t9
£10 = 4%j
alt10] = x
goto (5)

t1l = 4%i

x = al[t11]
t12 4]
t13 4*n
t14 = al[t13]
alt12] = t14
t15 = 4*n
al[t15] = x

Flow Graph :ij _ ot
Quicksort t1 = 4¥n B1
v = al[tl]
a " T [1= i+t
t2 = 4%i
B
t3 = a[t2] 2
if t3 < v goto B»
RERER
t4 = 4%j
t5 = a[t4] Bs
if t5 > v goto B3
if i >= j goto DBs Ba
t6 = 4%i t1l = 4x%i
x = al[t6] x = al[tl11]
t7 = 4%i t12 = 4x3i
t8 = 4xj t13 = 4xn
t9 = a[t8] Bs t14 = al[t13]
alt7] = t9 a[tl12] = t14
t10 = 4%j t15 = 4xn
a[tl10] = x a[tlb] = x
_ goto B>

Local Common | I
Subexpressions i1 - am B
v = al[tl]
a " "1 = i+t
t2 = 4%i
t3 = al[t2] B2
if t3 < v goto B»
RERER
t4 = 4%j
t5 = a[t4] Bs
if t5 > v goto B3
if i >= j goto DBs Ba
t6 = 4xi t11 = 4x*i
x = al[t6] x = al[tl11]
t7 = 4%i t12 = 4x3i
t8 = 4xj t13 = 4xn
t9 = a[t8] Bs t14 = a[t13]
alt7] = t9 altl12] = t14
t10 = 4xj t15 = 4xn
a[tl10] = x al[tlb] = x
_ goto B>

Global Common |; 1™
Subexpressions i1 - am B
v = al[tl]
a] S lio= it
t2 = 4%i
t3 = a[t2] B2
if t3 < v goto B»
RERER
t4 = 4%j
t5 = al[t4] Bs
if t5 > v goto B3
if i >= j goto DBs Ba
t6 = 4%i t1l = 4x%i
x = al[t6] x = al[ti11]
t8 = 4xj t13 = 4xn
t9 = a[t8] Bs t14 = al[t13]
alt6] = t9 alt1l] = t14
a[t8] = x alt13] = x
_ goto B>

Global Common |; 1™
Subexpressions i1 - am B
v = al[tl]
a] 1= i+t
t2 = 4%i
t3 = a[t2] B2
if t3 < v goto B»
RERER
t4 = 4%j
t5 = al[t4] Bs
if t5 > v goto B3
if i >= j goto DBs Ba
t6 = 4%i tl1ll = 4x%j
x = al[t6] x = al[ti11]
t13 = 4x%n
t9 = al[t4] Bs t14 = al[t13]
alt6] = t9 alt1l] = t14
altd] = x alt13] = x
_ goto B>

Global Common |; 1™
Subexpressions i - B
v = al[tl]
a] S lio= it
t2 = 4%i
t3 = al[t2] B2
if t3 < v goto B»
RERER
t4 = 4%]
t5 = a[t4] Bs
if t5 > v goto B3
if i >= j goto DBs Ba
t6 = 4%i tl1ll = 4x3i
x = al[t6] x = al[ti11]
t13 = 4x*n
Bs t14 = a[t13]
a[t6] = tb altl1l] = t14
altd4] = x alt13] = x
_ goto B>

Global Common |; 1™
Subexpressions |1 - am B
v = al[tl]
a " "1 i+l
t2 = 4%i
t3 = al[t2] Bz
if t3 < v goto Do
T [i=3-1
td = 4xj
t5 = al[t4] Bs
if t5 > v goto B3
if i >= j"goto Be Ba
/ \
x = al[t2] x = al[t2]
Bs t14 = a[t1]
alt2] = t5 alt2] = t14
altd] = x altl] = x
\ goto B>

i =m-1
Copy o)
Propagation 1 = 4%n 1
v = al[t1l]
a " "1 = i+t
t2 = 4%*i
B
t3 = a[t2] 2
if t3 < v goto B»
RERER
t4 = 4*j
t5 = a[t4] Bs
if t5 > v goto B3
if i >= j goto DBs Ba
x = t3 x = t3
Bs t14 = a[t1]
alt2] = tb alt2] = t14
altd4] = x altl] = x
_ goto B>

Dead-Code ST
Elimination t1 = 4n B1
v = al[tl]
a " T [1= i+t
t2 = 4%i
t3 = a[t2] B2
if t3 < v goto B»
RERER
t4 = 4%j
t5 = a[t4] Bs
if t5 > v goto B3
if i >= j goto DBs Ba
X = t3 X = t3
Bs t14 = a[t1]
a[t2] = tb alt2] = t14
al[t4] = t3 altl] = t3
_ goto B>

Dead-Code ST
Elimination £1 = 4%n B1
v = al[tl]
a " T [1= i+t
t2 = 4%i
t3 = a[t2] B2
if t3 < v goto B»
RERER
t4 = 4%j
t5 = a[t4] Bs
if t5 > v goto B3
if i >= j goto DBs Ba
Bs t14 = a[t1]
a[t2] = tb a[t2] = t14
al[td] = t3 altl] = t3
_ goto B>

Code Motion

e |loOp-invariant computation
e cCompute before loop

e Example:
while (i <= 1limit-2) /* statement does not change limit */
After code-motion

t = 1limit-2
while (i <= t) /* statement does not change limit or t */

14

Induction Variables
and Reduction in Strength

e Induction variable: each assignment to x of form z =z + ¢

e Reduction in strength: replace expensive operation by cheaper
one

15

Induct.Vvar /

Reduct.Strength
i =m-1
j=n
tl = 4x*n B
v = al[tl]
a " "1 = i+t
t2 = 4%*i
t3 = a[t2] Bo
if t3 < v goto B»
RERER
t4 = 4%j
t5 = a[t4] Bs
if t5 > v goto B3
if i >= j goto Bs Ba
a[t2] = tb t14 = a[t1]
al[td] = t3 Bs al[t2] = t14
_ goto B> altl] = t3

Induct.Vvar /

i=m-1
Reduct.Strength |; -x
tl = 4*n
v = a[t1] Bi
t2 = 4xi
t4 = 4x]
a " "1 = i+t
t2 = t2+4
t3 = a[t2] B2
if t3 < v goto B»
REREE
t4 = t4-4
t5 = a[t4] Bs
if t5 > v goto B3
if i >= j goto Bsg Ba
al[t2] = tb t14 = a[t1]
altd] = t3 Bs alt2] = t14
_ goto B> altl] = t3

17

Induct.Vvar /

i=m-1
Reduct.Strength |; -x

tl = 4%*n

v = al[t1] B

t2 = 4%i

t4 = 4%

t2 = t2+4

t3 = a[t2] Ba

if t3 < v goto B»

td = t4-4

t5 = al[t4] Bs

if t5 > v goto B3

if t2 >= t4 goto Bg| Ba
alt2] = tb t14 = a[t1]
al[t4] = t3 Bs alt2] = t14

_ goto B» altl] =

18

9.2 Introduction to Data-Flow Analysis

e Optimizations depend on data-flow analysis, e.g.,
— Global common subexpression elimination

— Dead-code elimination

e EXxecution path yields program state

e EXxtract information from program state for data-flow analy-
SIS

e Usually infinite number of execution paths / program states

e Different analyses extract different information

19

Data-Flow Analysis (Examples)

Extract information from program states at program point

e Reaching definitions: which definitions (assignments of val-
ues) of variable a reach program point?

e Can variable xz only have one constant value at program
point?
Useful for constant folding

20

Computing Reaching Definitions

ENTRY

<
<

m—-1
n

-
]

. a

ul

<
<

i+l
j-1

.

.

de: a = u2

d1
do
d3
= d4
ds

B3
d7

EXIT

Reaching definitions
e Before Bi: 0
B e After By: {dl,dg,d:g}
e Before By: ...

21

Computing Reaching Definitions

e Effect of single definition d : u = v op w:

— geng = {d}

— kill; = {all other definitions of w in program}

e Effect of block B, with definitions 1,2,...,n:

geng = {n,n—1,...,1} —{ definitions killed afterwards }
geny, U (gen,,_1 — Kill,) U (gen,,_»> — Kill,,_1 — Killp) ...
Killg = Kill{ UKillo U...UKilly

22

Computing Reaching Definitions

ENTRY
di: i = m-1

d: j =n

d3: a = ul
e T [da 1= i+l
ds: j = j-1

de: a = u2 B3

K d7: i = u3

EXIT

Ba

genp, = {d1,d2,d3}
kil/Bl — {d47d57d67d7}

genp, = {da,ds}
Killg, = {d1, d>, d7}

genp, = {de}
Killg, = {d3}
genp, = {dz}

Killg, = {d1,ds}

23

Iterative Algorithm

for Computing Reaching Definitions
OUTI[ENTRY] =0
for each basic block B other than ENTRY

OUT[B] =10

while (changes to any OUT occur)
for each basic block B other than ENTRY

{ IN[B] = Upredecessors r of sOUTIP]

OUTI[B] = genp U (IN[B] — Killp)
}

Typical form of algorithm for forward data-flow analysis

Example with B = By, By, B3, B4, EXIT. ..

24

Implementation of Iterative Algorithm
for Computing Reaching Definitions

With bit vectors

Block B | ouT[B]° | IN[B]} OUTI[B]' | IN[B]? OUT[B]?
B 000 0000 || 000 0000 | 111 0000 | 000 0000 | 111 0000
Bs 000 0000 || 111 0000 | 001 1100 | 111 0111 | 001 1110
Bs 000 0000 || 001 1100 | 000 1110 | 001 1110 | 000 1110
Ba 000 0000 || 001 1110 | 001 0111 | 001 1110 | 001 0111

EXIT || 000 0000 || 000 0000 | 001 0111 | 001 0111 | 001 0111

25

Live-Variable Analysis

e Variable x is live at program point p,
if value of x at p could be used later along some path

e Otherwise x is dead at p
e Information useful for register allocation (see college 7)

e Information about later use must be propagated backwards

26

Live-Variable Analysis

e Effect of block B on live variables
— def p: variables defined in B

— usep: variables that may be used in B prior to any defi-
nition in B

27

Computing Liveness

ENTRY
di: i = m-1

d: j =n

d3: a = ul
e “[dat 1= i+t
ds: j = j-1

de: a = u2 B3

K d7: i = u3

EXIT

defBl = {i,j, a}
usep, = {m,n,ul}

def32 = {’L,j}

UseBz — {?’7]}

defB3 = {CL}
usep, = {u2}

defB4 = {Z}
usep, = {u3}

28

Iterative Algorithm
for Computing Liveness

IN[EXIT] =0
for each basic block B other than EXIT
IN[B] =0

while (changes to any IN occur)
for each basic block B other than EXIT

{ OUTI[B] = Usyccessors s of pINIS]

IN[B] = useg U (OUT[B] — def)
}

Typical form of algorithm for backward data-flow analysis

29

Available expressions

e Is (value of) expression x op y available?

e Useful for global common subexpression elimination

e Can be decided with data-flow analysis (not for exam)

30

Efficient Iterative Data-Flow Analysis

Example: computing reaching definitions

OUT[ENTRY] =0
for each basic block B other than ENTRY

OUT[B] =10

while (changes to any OUT occur)
for each basic block B other than ENTRY

{ IN[B] = Upredecessors p of sOUTIF]

OUTI[B] = geng U (IN[B] — Killg)
}

Order of blocks in second for-loop matters

31

Efficient Iterative Data-Flow Analysis

Order of blocks in second for-loop matters
32

9.6 Loops in Flow Graphs
e Optimizations of loops have significant impact

e Essential to identify loops

33

Dominators

e Dominators:

— Node d dominates node n if every path from ENTRY node
to n goes through d: d dom n

— Node n dominates itself

— Loop entry dominates all nodes in loop

e Immediate dominator m of n:
last dominator on (any) path from ENTRY node to n

— ifd#n and d dom n, then d dom m

34

Dominators (Example)

35

Dominator Trees (Example)

Finding Dominators

Forward data-flow analysis

N is set of all nodes

OUTI[ENTRY] = {ENTRY?}
for each node n other than ENTRY

OUT[n] =N

while (changes to any OUT occur)
for each node n other than ENTRY

{ IN[r] = Npredecessors m of OUTIm]

OUT[n] =IN[n] U {n}
}

37

Depth-First Traversal

e Depth-first traversal of graph
— Start from entry node
— Recursively visit neighbours (in any order)

— Hence, visit nodes far away from the entry node as quickly
as it can (DF)

38

A Depth-First Spanning Tree

39

A Depth-First Spanning Tree

Advancing edges
Retreating edges

Cross edges

Back edge a — b,

if b dominates a
(regardless of DFST)
Each back edge is
retreating edge in DFST
Flow graph is reducible,
if each retreating edge in
any DFST is back edge

40

(Non)Reducible flow graphs
e In practice, almost every flow graph is reducible

e Example of nonreducible flow graph
(with advancing edges)

e [0 decide on reducibility:
1. Remove back edges

2. Is remaining graph acyclic?

41

Natural loops

e If loop has single-entry node, then compiler can assume initial
certain conditions

e Natural loop
1. Has single-entry node: header

2. Has back edge to header

e Each back edge n — d determines natural loop, consisting of
—d
— all nodes that can reach n without going through d

e Constructing natural loop of back edge. ..

42

Natural Loops (Example)

43

No Natural Loops

44

Natural Loops

e Useful property: unless two natural loops have same header
— either they are disjoint
— Or one is nested within other
Allows for inside-out optimization

e Assumption: if necessary, combine natural loops with same
header. . .

45

A Depth-First Ordering

e Depth-First Ordering:
nodes in DFST
in WRL order =
reverse of postorder

e Example:
1,2,3,4,5,6,7,8,9,10

e Edge m — n is
retreating, if and only if
n comes before m
in depth-first ordering

46

Depth of Flow Graph

e Depth of DFST is largest number of retreating edges on any
cycle-free path

e If flow graph is reducible, then depth is independent of DFST:
depth of flow graph

e Depth < depth of loop nesting in flow graph

a7

Depth of Flow Graph (Example)

Depth is 3, because of path
105743

48

Sipeed of Convergence _
of Iterative Data-Flow Algorithms

In data-flow analysis, can significant events be propagated to
node along acyclic path?

e Yes for
— Reaching definitions
— Live-variable analysis

— Available expressions

e NoO for

— Copy propagation

If yes, then fast convergence possible
49

Efficient Iterative Data-Flow Analysis

Example: computing reaching definitions

OUT[ENTRY] =0
for each basic block B other than ENTRY

OUT[B] =10

while (changes to any OUT occur)
for each basic block B other than ENTRY

{ IN[B] = Upredecessors p of sOUTIF]

OUTI[B] = geng U (IN[B] — Killg)
}

Order of blocks in second for-loop matters

50

Fast Convergence

Forward data-flow problem: visit nodes in depth-first-order

Recall: edge m — n is retreating, if and only if n comes
before m in depth-first ordering

Example: path of propagation of definition d:
3—+—5—-+19—-35—+16—>23—+45—+4 —- 10— 17

Number of iterations: 1 + depth (4 1)
Typical flow graphs have depth 2.75

Backward data-flow problem: visit nodes in reverse of depth-
first-order

51

En verder. ..

Maandag 19 november: inleveren opdracht 3

Dinsdag 20 november: practicum over opdracht 4

Eerst naar 403, daarna naar 302/304

Inleveren 10 december

Dinsdag 27 november: werkcollege in 403
(dus geen hoorcollege over Daedalus)

Dinsdag 4 december: practicum over opdracht 4

52

Compiler constructie

college 8
Code Optimization

Chapters for reading:
9.intro, 9.1, 9.2-9.2.5, 9.6

53

