
Compilerconstructie

najaar 2012

http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs.nl

college 7, dinsdag 6 november 2012

Code Generation

1



Code Generator Position in a Compiler

source

program
- Front

End
-intermediate

code

Code
Optimizer

-intermediate

code

Code
Generator

-
target

program

• Output code must

– be correct

– use resources of target machine effectively

• Code generator must run efficiently

Generating optimal code is undecidable problem
Heuristics are available

2



8.1 Issues in Design of Code Generator

• Input to the code generator

• The target program

• Instruction selection

• Register allocation and assignment

• Evaluation order

3



Input to the Code Generator

• Intermediate representation of source program

– Three-address representations (e.g., quadruples)

– Virtual machine representations (e.g., bytecodes)

– Postfix notation

– Graphical representations (e.g., syntax trees and DAGs)

• Information from symbol table to determine run-time ad-

dresses

• Input is free of errors

– Type checking and conversions have been done

4



The Target Program

• Common target-machine architectures

– RISC: reduced instruction set computer

– CISC: complex instruction set computer

– Stack-based

• Possible output

– Absolute machine code (executable code)

– Relocatable machine code (object files for linker)

– Assembly-language

5



Instruction Selection

• Given IR program can be implemented by many different
code sequences

• Different machine instruction speeds

• Naive approach: statement-by-statement translation, with a
code template for each IR statement

Example: x = y + z

LD RO, y
ADD R0, R0, z
ST x, R0

Now, a = b+c d = a+e

LD RO, b
ADD R0, R0, c
ST a, R0
LD RO, a
ADD R0, R0, e
ST d, R0

6



Target Machine

• Designing code generator requires understanding of target

machine and its instruction set

• Our machine model

– byte-addressable

– has n general purpose registers R0, R1, . . . , Rn− 1

– assumes operands are integers

7



Instructions of Target Machine

• Load operations: LD dst,addr
e.g., LD r, x or LD r1, r2

• Store operations: ST x, r

• Computation operations: OP dst, src1, src2
e.g., SUB r1, r2, r3

• Unconditional jumps: BR L

• Conditional jumps: Bcond r, L
e.g., BLTZ r, L

8



Addressing Modes of Target Machine

Form Address Example

r r LD R1, R2
x x LD R1, x
a(r) a+ contents(r) LD R1, a(R2)
c(r) c+ contents(r) LD R1, 100(R2)
∗r contents(r) LD R1, ∗R2
∗c(r) contents(c+ contents(r)) LD R1, ∗100(R2)
#c LD R1,#100

9



Addressing Modes (Examples)

b = a[i]:

LD R1, i
MUL R1, R1, #8
LD R2, a(R1)
ST b, R2

a[j] = c

LD R1, c
LD R2, j
MUL R2, R2, #8
ST a(R2), R1

x = *p

LD R1, p
LD R2, 0(R1)
ST x, R2

if x < y goto L

LD R1, x
LD R2, y
SUB R1, R1, R2
BLTZ R1, M

10



Instruction Costs

• Costs associated with compiling / running a program

– Compilation time

– Size, running time, power consumption of target program

• Finding optimal target problem: undecidable

• (Simple) cost per target-language instruction:

– 1 + cost for addressing modes of operands

≈ length (in words) of instruction

Examples:

instruction cost

LD R0, R1 1
LD R0, x 2
LD R1, *100(R2) 2

11



8.4 Basic Blocks and Flow Graphs

1. Basic block: maximal sequence of consecutive three-address

instructions, such that

(a) Flow of control can only enter through first instruction of

block

(b) Control leaves block without halting or branching

2. Flow graph: graph with

nodes: basic blocks

edges: indicate flow between blocks

12



Determining Basic Blocks

• Determine leaders

1. First three-address instruction is leader

2. Any instruction that is target of goto is leader

3. Any instruction that immediately follows goto is leader

• For each leader, its basic block consists of leader and all

instructions up to next leader (or end of program)

13



Determining Basic Blocks (Example)

Determine leaders

Pseudo code

for i = 1 to 10 do
for j = 1 to 10 do

a[i, j] = 0.0;
for i = 1 to 10 do

a[i, i] = 1.0;

Three-address code

1) i = 1
2) j = 1
3) t1 = 10 * 1
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)

10) i = i + 1
11) if i <= 10 goto (2)
12) i = 1
13) t5 = i - 1
14) t6 = 88 * t5
15) a[t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

14



Determining Basic Blocks (Example)

Determine leaders

Pseudo code

for i = 1 to 10 do
for j = 1 to 10 do

a[i, j] = 0.0;
for i = 1 to 10 do

a[i, i] = 1.0;

Three-address code

−→ 1) i = 1
−→ 2) j = 1
−→ 3) t1 = 10 * 1

4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)

−→ 10) i = i + 1
11) if i <= 10 goto (2)

−→ 12) i = 1
−→ 13) t5 = i - 1

14) t6 = 88 * t5
15) a[t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

15



Flow Graph

Edge from block B to block C

• if there is (un)conditional jump from end of B to beginning

of C

• if C immediately follows B in original order,

and B does not end in unconditional jump

16



Flow Graph (Example)

Three-address code

−→ 1) i = 1
−→ 2) j = 1
−→ 3) t1 = 10 * 1

4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)

−→ 10) i = i + 1
11) if i <= 10 goto (2)

−→ 12) i = 1
−→ 13) t5 = i - 1

14) t6 = 88 * t5
15) a[t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

ENTRY

?

i = 1B1

?
j = 1B2

?
t1 = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4 = t3 - 88

a[t4] = 0.0

j = j + 1

if j <= 10 goto B3

B3

$

%

�

?

i = i + 1

if i <= 10 goto B2

$

%

�

B4

?

i = 1B5

?
17



Loops in Flow Graph

Loop is set of nodes

• With unique loop entry e

• Every node in L has

nonempty path in L to e

Example

• {B3}, with loop entry B3

• {B2, B3, B4}, with loop

entry B2

• {B6}, with loop entry B6

ENTRY

?

i = 1B1

?
j = 1B2

?
t1 = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4 = t3 - 88

a[t4] = 0.0

j = j + 1

if j <= 10 goto B3

B3

$

%

�

?

i = i + 1

if i <= 10 goto B2

$

%

�

B4

?

i = 1B5

?
18



Next-Use Information

• Next-use information is needed for dead-code elimination and

register assignment

(i) x = a * b

...

(j) z = c + x

Instruction j uses value of x computed at i
x is live at i,
i.e., we need value of x later

• For each three-address statement x = y op z in block, record

next-uses of x, y, z

19



Determining Next-Use Information

For single basic block

• Assume all non-temporary variables are live on exit

• Make backward scan of instructions in block

• For each instruction i: x = y op z

1. Attach to i current next-use- and liveness information of
x, y, z

2. Set x to ‘not live’ and ‘no next use’

3. Set y and z to ‘live’
Set ‘next uses’ of y and z to i

20



Passing Liveness Information over Blocks

Example of loop

?

a = b + c

d = d - b

e = a + f

B1

�
�

�
��	

@
@
@@R

f = a - d B2

@
@
@

@@R

b = d + f

e = a - c
B3

�
�

��	

@
@
@@R

b = d + c B4

'

&

-

@
@
@@R

21



Passing Liveness Information over Blocks

Example of loop

?

a = b + c

d = d - b

e = a + f

B1

�
�

�
��	

@
@
@@R

f = a - d B2

@
@
@

@@R

b = d + f

e = a - c
B3

�
�

��	

@
@
@@R

b = d + c B4

'

&

-

@
@
@@R

bcdf

acdef

acde

cdef

acdf

bcdef

b,d,e,f live

cdef

bcdef

b,c,d,e,f live

22



8.6 A Simple Code Generator

Use of registers

• Operands of operation must be in registers

• To hold values of temporary variables

• To hold (global) values that are used in several blocks

• To manage run-time stack

Assumption: subset of registers available for block

Machine instructions of form

• LD reg,mem

• ST mem, reg

• OP reg, reg, reg

23



Register and Address Descriptors

• Register descriptor keeps track of what is currently in register

– Example:

LD R, x → register R contains x

– Initially, all registers are empty

• Address descriptor keeps track of locations where current

value of a variable can be found

– Example:

LD R, x → x is (also) in R

– Information stored in symbol table

24



The Code-Generation Algorithm

For each three-address instruction x = y op z

1. Use getReg(x = y op z) to select registers Rx, Ry, Rz

2. If y is not in Ry, then issue instruction LD Ry, y′,

where y′ is a memory location for y

(according to address descriptor)

3. If z is not in Rz, . . .

4. Issue instruction OP Rx, Ry, Rz

At end of block: store all variables that are live-on-exit and not

in their memory locations (according to address descriptor)

25



Managing Register / Address Descriptors

Description in book

Example: d = (a− b) + (a− c) + (a− c) a = . . .old value of d

t = a - b
LD R1, a
LD R2, b
SUB R2, R1, R2

u = a - c
LD R3, c
SUB R1, R1, R3

v = t + u
ADD R3, R2, R1

a = d
LD R2, d

d = v + u
ADD R1, R3, R1

exit
ST a, R2
ST d, R1

26



Function getReg

For each instruction x = y op z

• To compute Ry

1. If y is in register, −→ Ry

2. Else, if empty register available, −→ Ry

3. Else, select occupied register

For each register R and variable v in R

(a) If v is also somewhere else, then OK

(b) If v is x, and x is not z, then OK

(c) Else, if v is not used later, then OK

(d) Else, ST v,R is required

Take R with smallest number of stores

27



Function getReg

For each instruction x = y op z

• To compute Rx, similar with few differences

For each instruction x = y, choose Rx = Ry

28



8.8 Register Allocation and Assignment

So far, live variables in registers are stored at end of block

Use of registers

• Operands of operation must be in registers

• To hold values of temporary variables

• To hold (global) values that are used in several blocks

• To manage run-time stack

29



Usage counts

With x in register during loop L

• Save 1 for each use of x that is not preceded by assignment

in same block

• Save 2 for each block, where x is assigned a value and x is

live on exit

•

Total savings ≈
∑

blocks B∈L

use(x,B) + 2 ∗ live(x,B)

Choose variables x with largest savings

30



Usage counts (Example)

?

a = b + c

d = d - b

e = a + f

B1

�
�

�
��	

@
@
@@R

f = a - d B2

@
@
@

@@R

b = d + f

e = a - c
B3

�
�

��	

@
@
@@R

b = d + c B4

'

&

-

@
@
@@R

bcdf

acdef

acde

cdef

acdf

bcdef

b,d,e,f live

cdef

bcdef

b,c,d,e,f live

Savings for a are 1 + 1+ 1 ∗ 2 = 4

31



8.5 Optimization of Basic Blocks

To improve running time of code

• Local optimization: within block

• Global optimization: across blocks

Local optimization benefits from DAG representation of basic

block

32



DAG Representation of Basic Blocks

1. A node for initial value of each variable appearing in block

2. A node N for each statement s in block
Children of N are nodes corresponding to last definitions of
operands used by s

3. Node N is labeled by operator applied at s
N has list of variables for which s is last definition in block

Example:

a = b + c

b = a - d

c = b + c

d = a - d

33



Local Common Subexpression
Elimination

• Use value-number method to detect common subexpressions

• Remove redundant computations

Example:

a = b + c

b = a - d

c = b + c

d = a - d

34



Local Common Subexpression
Elimination

• Use value-number method to detect common subexpressions

• Remove redundant computations

Example:

a = b + c

b = a - d

c = b + c

d = a - d

a = b + c

b = a - d

c = b + c

d = b

35



Dead Code Elimination

• Remove roots with no live variables attached

• If possible, repeat

Example:

a = b + c

b = b - d

c = c + d

e = b + c

No common subexpression

If c and e are not live. . .

36



Dead Code Elimination

• Remove roots with no live variables attached

• If possible, repeat

Example:

a = b + c

b = b - d

c = c + d

e = b + c

a = b + c

b = b - d

No common subexpression

If c and e are not live. . .

37



Algebraic Transformations

(see assignment 3)

Algebraic identities:

x+0 = 0+ x = x
x ∗ 1 = 1 ∗ x = x

Reduction in strength:

x2 = x ∗ x (cheaper)
2 ∗ x = x+ x (cheaper)
x/2 = x ∗ 0.5 (cheaper)

Constant folding:

2 ∗ 3.14 = 6.28

38



Algebraic Transformations

Common subexpressions resulting from commutativity / asso-

ciativity of operators:

x ∗ y = y ∗ x
c+ d+ b = (b+ c) + d

Common subexpressions generated by relational operators:

x > y ⇔ x− y > 0

39



8.7 Peephole Optimization

• Examines short sequence of instructions in a window (peep-

hole) and replace them by faster/shorter sequence

• Applied to intermediate code or target code

• Typical optimizations

– Redundant instruction elimination

– Eliminating unreachable code

– Flow-of-control optimization

– Algebraic simplification

– Use of machine idioms

40



Redundant Instruction Elimination

Example:

ST a, R0

LD R0, a

41



Eliminating Unreachable Code

Example:

if debug == 1 goto L1

goto L2

L1: print debugging information

L2:

42



Eliminating Unreachable Code

Example:

if debug != 1 goto L2

L1: print debugging information

L2:

If debug is set to 0 at beginning of program, . . .

43



Flow-of-Control Optimizations

Example:

goto L1

...

L1: goto L2

44



Compiler constructie

college 7

Code Generation

Chapters for reading:

8.intro, 8.1, 8.2, 8.4, 8.5–8.5.4, 8.6–8.8

45


