
Compilerconstructie

najaar 2012

http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs.nl

college 3, dinsdag 18 september 2012

Syntax Analysis (1)

1

4 Syntax Analysis

• Every language has rules prescribing the syntactic structure

of the programs:
– functions, made up of declarations and statements
– statements made up of expressions
– expressions made up of tokens

• Syntax of programming-language constructs can be described

by CFG
– Precise syntactic specification
– Automatic construction of parsers for certain classes of

grammars
– Structure imparted to language by grammar is useful for

translating source programs into object code
– New language constructs can be added easily

• Syntax analyis is performed by parser

2

4.1 Parser’s Position in a Compiler

-

source
program Lexical

Analyser

-
token

�

get next
token

Parser ············-

parse
tree Rest of

Frond End
-

intermediate
representation

Symbol
Table

@
@

@
@

@
@

@
@

@I@
@
@

@
@
@
@

@
@R

6

? �
�
�
�

�
�
�

�
���

�
�

�
�

�
�

�
�	

3

Parsing

Finding parse tree for given string

• Universal (any CFG)

– Cocke-Younger-Kasami

– Earley

• Top-down (CFG with restrictions)

– Predictive parsing

– LL (Left-to-right, Leftmost derivation) methods

– LL(1): LL parser, needs only one token to look ahead

• Bottom-up (CFG with restrictions)

Today: top-down parsing
Next week: bottom-up parsing

4

Syntax Error Handling

• Good compiler should assist in identifying and locating errors

– Lexical errors: compiler can easily detect and continue

– Syntax errors: compiler can detect and often recover

– Semantic errors: compiler can sometimes detect

– Logical errors: hard to detect

• Three goals. The error handler should

– Report errors clearly and accurately

– Recover quickly to detect subsequent errors

– Add minimal overhead to processing of correct programs

5

Error Detection and Reporting

• Viable-prefix property of LL/LR parsers allow detection of

syntax errors as soon as possible,

i.e., as soon as prefix of input does not match prefix of any

string in language (valid program)

• Reporting an error:

– At least report line number and position

– Print diagnostic message, e.g.,

“semicolon missing at this position”

6

Error-Recovery Strategies

• Continue after error detection,

restore to state where processing may continue, but. . .

• No universally acceptable strategy,

but some useful strategies:

– Panic-mode recovery: discard input until token in desig-

nated set of synchronizing tokens is found

– Phrase-level recovery: perform local correction on the in-

put to repair error, e.g., insert missing semicolon

Has actually been used

– Error productions: augment grammar with productions

for erroneous constructs

– Global correction: choose minimal sequence of changes

to obtain correct string

Costly, but yardstick for evaluating other strategies

7

4.2 Context-Free Grammars

Context-free grammar is a 4-tuple with

• A set of nonterminals (syntactic variables)

• A set of tokens (terminal symbols)

• A designated start/ symbol (nonterminal)

• A set of productions: rules how to decompose nonterminals

Example: CFG for simple arithmetic expressions:

G = ({expr , term, factor}, {id,+,−, ∗, /, (,)}, expr , P)

with productions P :

expr → expr + term | expr − term | term

term → term ∗ factor | term/factor | factor

factor → (expr) | id

8

Notational Conventions

1. Terminals:

a, b, c, . . .; specific terminals: +, ∗, (,),0,1, id, if, . . .

2. Nonterminals:

A,B,C, . . .; specific nonterminals: S, expr , stmt, . . . , E, . . .

3. Grammar symbols: X,Y, Z

4. Strings of terminals: u, v, w, x, y, z

5. Strings of grammar symbols: α, β, γ, . . .
Hence, generic production: A → α

6. A-productions:

A → α1, A → α2, . . . , A → αk ⇒ A → α1 | α2 | . . . | αk
Alternatives for A

7. By default, head of first production is start symbol

9

Notational Conventions (Example)

CFG for simple arithmetic expressions:

G = ({expr , term, factor}, {id,+,−, ∗, /, (,)}, expr , P)

with productions P :

expr → expr + term | expr − term | term

term → term ∗ factor | term/factor | factor

factor → (expr) | id

Can be rewritten concisely as:

E → E + T | E − T | T

T → T ∗ F | T/F | F

F → (E) | id

10

Derivations

Example grammar:

E → E + E | E ∗ E | − E | (E) | id

• In each step, a nonterminal is replaced by body of one of its

productions, e.g.,

E ⇒ −E ⇒ −(E) ⇒ −(id)

• One-step derivation:

αAβ ⇒ αγβ, where A → γ is production in grammar

• Derivation in zero or more steps:
∗
⇒

• Derivation in one or more steps:
+
⇒

11

Derivations

• If S
∗
⇒ α, then α is sentential form of G

• If S
∗
⇒ α and α has no nonterminals, then α is sentence of G

• Language generated by G is L(G) = {w | w is sentence of G}

• Leftmost derivation: wAγ ⇒
lm

wδγ

• If S
∗
⇒
lm

α, then α is left sentential form of G

• Rightmost derivation: γAw ⇒
rm

γδw,
∗
⇒
rm

Example of leftmost derivation:

E ⇒
lm

−E ⇒
lm

−(E) ⇒
lm

−(E + E) ⇒
lm

−(id+ E) ⇒
lm

−(id+ id)

12

Parse Tree
(from college 1)

(derivation tree in FI2)

• The root of the tree is labelled by the start symbol

• Each leaf of the tree is labelled by a terminal (=token) or ǫ

(=empty)

• Each interior node is labelled by a nonterminal

• If node A has children X1, X2, . . . , Xn, then there must be a

production A → X1X2 . . . Xn

Yield of the parse tree: the sequence of leafs (left to right)

13

Parse Trees and Derivations

E → E + E | E ∗ E | − E | (E) | id

E ⇒
lm

−E ⇒
lm

−(E) ⇒
lm

−(E + E) ⇒
lm

−(id+ E) ⇒
lm

−(id+ id)

�
��

@
@@

�
��

@
@@

�
��

@
@@

E

− E

(E)

E + E

id id

Many-to-one relationship between derivations and parse trees. . .

14

Ambiguity

More than one leftmost/rightmost derivation for same sentence

Example: a+ b ∗ c

E ⇒ E + E

⇒ id+ E

⇒ id+ E ∗ E

⇒ id+ id ∗ E

⇒ id+ id ∗ id

�
��

@
@@

�
��

@
@@

E

E + E

id E ∗ E

id ida+ (b ∗ c)

E ⇒ E ∗ E

⇒ E + E ∗ E

⇒ id+ E ∗ E

⇒ id+ id ∗ E

⇒ id+ id ∗ id

�
��

@
@@

�
��

@
@@

E

E ∗ E

E + E id

id id (a+ b) ∗ c
15

Eliminating ambiguity
• Sometimes ambiguity can be eliminated

• Example: “dangling-else”-grammar

stmt → if expr then stmt

| if expr then stmt else stmt

| other

Here, other is any other statement

if E1 then if E2 then S1 else S2

!!!!!!!

�
�

@
@

PPPPPPPP

���������

����
�
�

@
@

aaaaaa

XXXXXXXXXXXX

stmt

if expr then stmt

E1 if expr then stmt else stmt

E2 S1 S2

���������

����
�
�

@
@

aaaaaa

XXXXXXXXXXXX

�����
�

�
A
A
HHHH

stmt

if expr then stmt else stmt

E1 if expr then stmt S2

E2 S1

16

Eliminating ambiguity

Example: ambiguous “dangling-else”-grammar

stmt → if expr then stmt

| if expr then stmt else stmt

| other

Equivalent unambiguous grammar

stmt → matchedstmt

| openstmt

matchedstmt → if expr then matchedstmt else matchedstmt

| other

openstmt → if expr then stmt

| if expr then matchedstmt else openstmt

Only one parse tree for
if E1 then if E2 then S1 else S2

Associates each else with closest previous unmatched then

17

Left Recursion

• Productions of the form A → Aα | β are left-recursive

– β does not start with A

– Example: E → E + T | T

• Top-down parser may loop forever if grammar has left-recursive

productions

• Left-recursive productions can be eliminated by rewriting pro-

ductions

18

Left Recursion Elimination

Immediate left recursion

• Productions of the form A → Aα | β

• Can be eliminated by replacing the productions by

A → βA′ (A′ is new nonterminal)
A′ → αA′ | ǫ (A′ → αA′ is right recursive)

• Procedure:

1. Group A-productions as

A → Aα1 | Aα2 | . . . | Aαm | β1 | β2 | . . . | βn

2. Replace A-productions by

A → β1A
′ | β2A

′ | . . . | βnA
′

A′ → α1A
′ | α2A

′ | . . . | αmA′ | ǫ

19

Left Recursion Elimination

General left recursion

• Left recursion involving two or more steps

S → Ba | b

B → AA | a

A → Ac | Sd

• S is left-recursive because

S ⇒ Ba ⇒ AAa | SdAa (not immediately left-recursive)

20

General Left Recursion Elimination

• Algorithm for G with no cycles or ǫ-productions

1) arrange nonterminals in some order A1, A2, . . . , An

2) for (i = 1 to n)
3) { for (j = 1 to i− 1)
4) { replace each production of form Ai → Ajγ

by the productions Ai → δ1γ | δ2γ | . . . | δkγ, where
Aj → δ1 | δ2 | . . . | δk are all current Aj-productions

5) }
6) eliminate immediate left recursion among Ai-productions
7) }

• Example

S → Ba | b

B → AA | a

A → Ac | Sd

21

General Left Recursion Elimination

• We order nonterminals: S,B,A (n = 3)

• i = 1 and i = 2: nothing to do

• i = 3:

– substitute A → Sd

– substitute A → Bad

– eliminate immediate left-recursion in A-productions

• What would algorithm do for

S → Ba | b

B → AA | a

A → Ac | Sd | ǫ

22

Left Factoring

Another transformation to produce grammar suitable for predic-

tive parsing

• If A → αβ1 | αβ2 and input begins with nonempty string

derived from α

How to expand A? To αβ1 or to αβ2?

• Solution: left-factoring

Replace two A-productions by

A → αA′

A′ → β1 | β2

23

Left Factoring (Example)

• Which production to choose when input token is if?

stmt → if expr then stmt

| if expr then stmt else stmt

| other

expr → b

• Or abstract:

S → iEtS | iEtSeS | a

E → b

• Left-factored: . . .

24

Left Factoring (Example)

What is result of left factoring for

S → abS | abcA | aaa | aab | aA

25

Non-Context-Free Language Constructs

• Declaration of identifiers before their use

L1 = {wcw | w ∈ {a, b}∗}

• Number of formal parameters in function declaration equals
number of actual parameters in function call
Function call may be specified by

stmt → id (expr list)

expr list → expr list, expr | expr

L2 = {anbmcndm | m,n ≥ 1}

Such checks are performed during semantic-analysis phase

26

4.4 Top-Down Parsing

• Construct parse tree,

– starting from the root

– creating nodes in preorder

Corresponds to finding leftmost derivation

27

Top-Down Parsing (Example)
•

E → E + T | T

T → T ∗ F | F

F → (E) | id

• Non-left-recursive variant:

E → TE′

E′ → +TE′ | ǫ

T → FT ′

T ′ → ∗FT ′ | ǫ

F → (E) | id

• Top-down parse for input id+ id ∗ id . . .

• At each step: determine production to be applied

28

Top-Down Parsing

• Recursive-descent parsing

• Predictive parsing

– Eliminate left-recursion from grammar

– Left-factor the grammar

– Compute FIRST and FOLLOW

– Two variants:

∗ Recursive (recursive calls)

∗ Non-recursive (explicit stack)

29

Recursive Descent Parsing

Recursive procedure for each nonterminal

void A()
1) { Choose an A-production, A → X1X2 . . . Xk;
2) for (i = 1 to k)
3) { if (Xi is nonterminal)
4) call procedure Xi();
5) else if (Xi equals current input symbol a)
6) advance input to next symbol;
7) else /* an error has occurred */;

}
}

Pseudocode is nondeterministic

30

Recursive Descent

• One may use backtracking:

– Try each A-production in some order

– In case of failure at line 7 (or call in line 4),

return to line 1 and try another A-production

– Input pointer must then be reset,

so store initial value input pointer in local variable

• Example in book

• Backtracking is rarely needed: predictive parsing

31

FIRST
• Let α be string of grammar symbols

• FIRST(α) = set of terminals/tokens which begin strings de-
rived from α

• If α
∗
⇒ ǫ, then ǫ ∈ FIRST(α)

• Example

F → (E) | id

FIRST(FT ′) = {(, id}

• When nonterminal has multiple productions, e.g.,

A → α | β

and FIRST(α) and FIRST(β) are disjoint,
we can choose between these A-productions by looking at
next input symbol

32

Computing FIRST

Compute FIRST(X) for all grammar symbols X:

• If X is terminal, then FIRST(X) = {X}

• If X → ǫ is production, then add ǫ to FIRST(X)

• Repeat adding symbols to FIRST(X) by looking at produc-

tions

X → Y1Y2 . . . Yk

(see book) until all FIRST sets are stable

33

FIRST (Example)

E → TE′

E′ → +TE′ | ǫ

T → FT ′

T ′ → ∗FT ′ | ǫ

F → (E) | id

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}

FIRST(E′) = {+, ǫ}

FIRST(T ′) = {∗, ǫ}

34

FOLLOW

• Let A be nonterminal

• FOLLOW(A) is set of terminals/tokens that can appear im-

mediately to the right of A in sentential form:

FOLLOW(A) = {a | S
∗
⇒ αAaβ}

• Compute FOLLOW(A) for all nonterminals A

See book

35

FIRST and FOLLOW (Example)

E → TE′

E′ → +TE′ | ǫ

T → FT ′

T ′ → ∗FT ′ | ǫ

F → (E) | id

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}

FIRST(E′) = {+, ǫ}

FIRST(T ′) = {∗, ǫ}

FOLLOW(E) = FOLLOW(E′) = {),$}

FOLLOW(T) = FOLLOW(T ′) = {+,),$}

FOLLOW(F) = {∗,+,),$}

36

Parsing Tables

When next input symbol is a (terminal or input endmarker $),

we may choose A → α

• if a ∈ FIRST(α)

• if (α = ǫ or α
∗
⇒ ǫ) and a ∈ FOLLOW(A)

Algorithm to construct parsing table M [A, a]

for (each production A → α)
{ for (each a ∈ FIRST(α))

add A → α to M [A, a];
if (ǫ ∈ FIRST(α))
{ for (each b ∈ FOLLOW(A))

add A → α to M [A, b];
}

}
If M [A, a] is empty, set M [A, a] to error.

37

LL(1) Grammars

• LL(1)
Left-to-right scanning of input, Leftmost derivation,
1 token to look ahead suffices for predictive parsing

• Grammar G is LL(1),
if and only if for two distinct productions A → α | β,
– α and β do not both derive strings beginning with same

terminal a
– at most one of α and β can derive ǫ
– if β

∗
⇒ ǫ, then α does not derive strings beginning with

terminal a ∈ FOLLOW(A)

• In other words, . . .

• Grammar G is LL(1), if and only if parsing table uniquely
identifies production or signals error

38

LL(1) Grammars (Example)

• Not LL(1):

E → E + T | T

T → T ∗ F | F

F → (E) | id

• Non-left-recursive variant, LL(1):

E → TE′

E′ → +TE′ | ǫ

T → FT ′

T ′ → ∗FT ′ | ǫ

F → (E) | id

39

Nonrecursive Predictive Parsing

Cf. top-down PDA from FI2

Stack

$

Z

Y

X

Predictive
Parsing
Program

�

?

Parsing
Table M

�
�
�
��

Input a + b $

-
Output

40

Nonrecursive Predictive Parsing

push $ onto stack;
push S onto stack;
let a be first symbol of input w;
let X be top stack symbol;
while (X 6= $) /* stack is not empty */
{ if (X = a)
{ pop stack;
let a be next symbol of w;

}
else if (X is terminal)

error();
else if (M [X, a] is error entry)

error();
else if (M [X, a] = X → Y1Y2 . . . Yk)

{ output production X → Y1Y2 . . . Yk;
pop stack;
push Yk, Yk−1, . . . , Y1 onto stack, with Y1 on top;

}
let X be top stack symbol;

}

Stack

$

Z

Y

X

Predictive
Parsing
Program

�

?

Parsing
Table M

�
�
�
��

Input a + b $

-
Output

41

Error Recovery in Predictive Parsing

Panic-mode recovery

• Discard input until token in set of designated synchronizing

tokens is found

• Heuristics

– Put all symbols in FOLLOW(A) into synchronizing set for

A (and remove A from stack)

– Add symbols based on hierarchical structure of language

constructs

– Add symbols in FIRST(A)

– If A
∗
⇒ ǫ, use production deriving ǫ as default

– Add tokens to synchronizing sets of all other tokens

42

Error Recovery in Predictive Parsing

Phrase-level recovery

• Local correction on remaining input that allows parser to

continue

• Pointer to error routines in blank table entries

– Change symbols

– Insert symbols

– Delete symbols

– Print appropriate message

• Make sure that we do not enter infinite loop

43

Predictive Parsing Issues

• What to do in case of multiply-defined entries?

– Transform grammar

∗ Left-recursion elimination

∗ Left factoring

– Not always applicable

• Designing grammar suitable for top-down parsing is hard

– Left-recursion elimination and left factoring make gram-

mar hard to read and to use in translation

Therefore: try to use automatic parser generators

44

Compiler constructie

college 3

Syntax Analysis (1)

Chapters for reading: 4.1–4.4

45

