Compilerconstructie
najaar 2012
http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs.nl

college 2, dinsdag 11 september 2012

Lexical Analysis

2.7 Symbol Table

e Symbol table holds information about source-program con-
structs (e.g., identifiers)
— string
— additional information (type, position in storage)

e Symbol table is globally accessible (to all phases of compiler)

e Information is collected incrementally by analysis phases, and
used by synthesis phases

e Implementation by Hashtable, with methods
— put (String, Symbol)
— get (String)

Symbol Table Per Scope

The same identifier may be declared more than once

1) { int x; int y;

2) { int w; bool y; int z;
3) Gl W LX ..
4) }

5) Cee Woeetd e X iy ael Y s
6) 1}

Bo: |w]| int
bool
int

<

n

The Use of Symbol Tables

program — { top=null;}
block
block - { { saved = top;
top = new Env(top);
}
decls stmts '} { top = saved,
}
decls — decls decl
| e
decl — type id; { s=new Symbol,

s.type = type.lexeme;
top.put(id.lexeme, s);

}
In book (edition 2) extended for real translation

2.6 Lexical Analyser

Reads and converts the input into a stream of tokens to be
analysed by the parser

Lexeme: Sequence of input characters comprising single token

Typical tasks of the lexical analyser

e Remove white space and comments
e Encode constants as tokens:

31+ 28+ 59 — (num, 31) (4+) (num,28) (4+) (num, 59)
e Recognize keywords
e Recognize identifiers:

count = count -+ increment; —

(id,” count”) (=) (id,"” count”) (+) (id,” increment”) (;)

Lexical analyser may need to read ahead (with input buffer)
2

Symbol Table Per Scope

The same identifier may be declared more than once

1) { int x; int y;

2) { int w; bool y; int z;

3) Cee Woiee eee X i een Y el e Zoaals
4) }

5) e Wi eee X e e Y e

6 }

Translation Scheme (Example)
(from college 1)

expr — expry+ term {print("+")}
expr — expri — term {print("—")}
expr — term

term — 0O {print('0’)}

term — 1 {print('1')}

term — 9 {print("9")}
Example: parse tree for 9 — 542

Implementation requires postorder traversal

3.1 Lexical Analyser - Parser Interaction

- token .
source Lexical b to semantic
program Analyser arser analysis

getNextToken
Symbol
Table

Lexical Analyser

Reasons why it is a separate phase of a compiler
e Simplifies the design of the compiler

e Provides efficient implementation

— Systematic techniques to implement lexical analysers (by
hand or automatically)

— Stream buffering methods to scan input

e Improves portability

— Non-standard symbols and alternate character encodings
can be more easily translated

Attributes for Tokens

E=M=xC %2

i

Lexical

Analyser

i

,pointer to symbol-table entry for E) (assign_op)
d, pointer to symbol-table entry for M) (mult_op)
(id, pointer to symbol-table entry for C) (exp_op)
(number, integer value 2)

E

3.2 Input Buffering
Use two buffers of size N for input
e Saves time

e Allows for looking ahead one or more characters, e.g., for
— identifiers: ifoundit
— relational operators: <=

Take longest prefix of input that matches any pattern

=]
]

* 1 2 leof

|

forward
lexemeBegin

3.3 Specification of Tokens
Regular expressions to specify patterns for tokens

Terminology (from FI1)

e An alphabet X is a finite set of symbols (characters), e.g.,
{0,1}, ASCII, Unicode

e A string s is a finite sequence of symbols from %
— |s| denotes the length of string s, e.g., |[banana| =6
— e denotes an empty string: |¢/ =0
e A language is a set of strings over some fixed alphabet =

15

Tokens, Patterns and Lexemes

e Token: pair of token name and optional attribute value, e.g.,
(id, 1), (num, 31), (assign_op)

Lexeme: specific sequence of characters that makes up to-
ken, e.g., count, 31, =

Pattern: description of form that lexemes of a token may
take, e.qg.,

if: if

comparison: < or > or <= or >=or ==or | =

id: letter followed by letters and digits

10

Lexical Errors

e Hard to detect by lexical analyser alone, e.g.,
fi (a==£(x)) ...

e What if none of the patterns matches?
— 'Panic mode’ recovery: delete characters until you find
well-formed token
— * Delete one character from remaining input
* Insert missing character into remaining input
* Replace character by another character

* Transpose two adjacent characters

12

Implement a Lexical Analyser

e By hand,
using transition diagram to specify lexemes

e With a lexical-analyser generator (Lex),
using regular expressions to specify lexemes:

Regular expressions —
(non-deterministic) finite automaton —
determininistic finite automaton

Input to ‘driver’

14

String operations

e Concatenation of strings = and y is denoted as zy
e.g., if x = dog and y = house then zy = doghouse
S€E = €5 =S

e Exponentiation
— Define

w
Il
o

ifi>0

@

Il
@
»

— Then

®w ®
([
® ®
@

16

Language Operations

e Union LUD={s|seLorsecD}

e Concatenation LD ={zy|z € L and y € D}

e Exponentiation L0 = {e}; Li=L"1L ifi>0
e Kleene closure L* = Uj=0

(zero or more concatenation)

e Positive closure Lt =uU—
(one or more concatenation)

Regular Expressions (Example)

In C, an identifier is a letter followed by zero or more letters or
digits (underscore is considered letter):

letter_ (letter_ | digit)*

Regular Expressions (Example)

e Remove unnecessary parentheses by assuming precedence re-
lation between x, concatenation, and |, e.g.,

(@) | ((b)*(c)) is equivalent to a|b*c
e Let X = {a,b}. Then the regular expression:
—alb denotes the set {a,b}
— (a|b)(a|b) denotes the set {aa,ab,ba, bb}
— a* denotes the set {¢,a,aa,aaa,...}
— (a|b)* denotes the sets of all strings over {a,b}
—ala'hb denotes the string a and all strings consist-

ing of zero or more a’s followed by one b

e If r and s denote the same language L, then r = s,
eg. (a|b)y=(bla)

21

Regular Definitions

e A regular definition is a sequence of definitions of the form:

dy — 1
&w — T2

dn — ™

where r; is a regular expression over X U {dy,dp,...,d;—1}

e Obtain regular expression over 3 by successively substituting
dj (j=1,2,...,n—1)in7j41,...,mn by (r;)

23

Language Operations (Example)
Let alphabets L = {A,B,...,Z,a,b,...,z} and D ={0,1,...,9}
e LUD is set of letters and digits
e LD is set of strings consisting of a letter followed by a digit
e L% is set of all four-letter strings
e L* is set of all finite strings of letters, including e

e L(LUD)* is set of all strings of letters and digits beginning
with a letter (‘identifiers’)

e D1 is set of all strings of one or more digits (‘nonnegative
integers’)

18

Regular Expressions (Definition)
e Each regular expression r denotes a language L(r)

e Defining rules:
— e is regular expression, and L(e) = {e}
— if a € X, then a is regular expression, and L(a) = {a}.

— if » and s are regular expressions, then
* (1) | (s) is regular expression denoting L(r) U L(s)

= (r)(s) is regular expression denoting L(r)L(s)
x (r)* is regular expression denoting (L(r))*

= (r) is regular expression denoting L(r)

20

Regular Definitions

e A regular definition is a sequence of definitions of the form:

Rulﬂw
dy — 1o

dpn — T

where r; is a regular expression over X U {dy,dp,...,d;—1}
e Obtain regular expression over ~ by ...

22

Regular Definitions (Example)

e Identifiers in C

letter. — A|B|...|Z|a|b|...|z]|_
digit — 0[1]...]9
id — letter_(letter_| digit)*

e Recursion is not allowed
digit — digit(digit)* not OK

digits — digit(digit)* OK

24

Notational Shorthands

e We often use the following shorthands:
— one-or-more instance of: 7t = rr*
— zero-or-one instance of: r? =r|¢
— character classes: [abd] =a|b|d
[a—z]=a|b|...|z

e Example, unsigned numbers:
5280, 0.01234, 6.336E4, 1.89E-4
digit — [0—9]
digits — digit™
number — digits(.digits)?(E[+—]?digits)?

Regular Definitions for Tokens

Regular definitions describing patterns for these tokens
digit — [0—9]
digits digitt
number digits(.digits)?(E[+—]7digits)?

letter

[A—Za—2z]
letter (letter | digit)*

N
N
N

id —
—
—
N
N

if if
then then
else else
relop < | > <= >=1=|<>

Regular definition for white space

ws — (blank | tab | newline)™

Transition Diagrams

(‘Almost finite automata’)

relop —» < |>|<=|>=|=|<>

st (9y—<—+(1)—=—(2) return(relop, LE)
>

(3) return(relop, NE)
*
(4) return(relop, LT)

(5) return(relop, EQ)

other

(7) return(relop, GE)
return(relop, GT)

Retract input one position, if necessary (x)

Transition Diagrams

letter or digit

A

start 5 letter @ other
\ZJ N

5

How to distinguish between identifiers and (reserved) keywords?

e Install reserved words in symbol table initially
Used in above diagram

e Separate transition diagram for each keyword
Try these first, before the diagram for identifiers

25

27

29

return(getToken(), installID())

31

3.4 Recognition of Tokens

Grammar for branching statements:

stmt —

expr —

term —

if expr then stmt

if expr then stmt else stmt
€

term relop term

term

id

number

Terminals are if, then, else, relop, id and number.
These are the names of the tokens.

26

Lexemes and Their Tokens

Goal:
Lexemes Token name Attribute value
Any ws - -
if if -
then then -
else else -
Any id id pointer to table entry
Any number number pointer to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>= relop GE

28

Transition Diagrams

Identifiers and keywords

id — letter(letter | digit)*

letter or digit

N

start 9 letter @ other

*
@) return(getToken(), installID())

How to distinguish between identifiers and (reserved) keywords?

30

From Diagram to Lexical Analyser

TOKEN getRelop ()
{ TOKEN retToken = new (RELOP);
while (1)
{ /* repeat character processing until a return
or failure occurs */

switch(state)

{ case 0: ¢ = nextChar();
if (¢ == ’<’) state = 1;
else if (c == ’=’) state = 5;
else if (c == ’>’) state = 6;
else fail(); /* lexeme is not a relop */
break;

case 1:

case 8: retract();
retToken.attribute = GT;
return(retToken) ;

32

Entire Lexical Analyser

Based on transition diagrams for different tokens
How?

33

3.5 The Lexical-Analyser Generator Lex

Systematically translates regular definitions into C source code
for efficient scanning

Lex source program Lex
lex.1l compiler

—— lex.yy.c

C

lex.yy.c— —a.out

compiler

a.out

Input stream Sequence of tokens

35

Operation of Lexical Analyser

The lexical analyser generated by Lex
e Activated by parser

Reads input character by character

Executes action A; corresponding to pattern F;

Typically, A; returns to the parser

If not (e.g., in case of white space), proceed to find additional
lexemes

Lexical analyser returns single value: the token name

Attribute value passed through global variable yylval

37

Lexemes and Their Tokens

Goal:
Lexemes Token name Attribute value
Any ws - -
if if -
then then -
else else -
Any id id pointer to table entry
Any number number pointer to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>= relop GE

39

Entire Lexical Analyser

Based on transition diagrams for different tokens
Three possibi

e Try transition diagrams sequentially (in right order)

e Run transition diagrams in parallel
Make sure to take longest prefix of input that matches any
pattern

e Combine all transition diagrams into one

34

Structure of Lex Programs

e A Lex program has the following form

declarations
%%
translation rules
%%

user defined au

ary functions

e Translation rules are of the form
Pattern { Action }

Patterns are Lex regular expressions

36

Regular Definitions for Tokens

Regular definitions describing patterns for these tokens

digit — [0—9]
digits — digitt
number — digits(.digits)?(E[+—]?digits)?

letter — [A—Za—z]

id — letter(letter | digit)*

if — if

then — then

else — else

relop — < | > | <= =] =] <>

Regular definition for white space
ws — (blank | tab | newline)™

38

The Lex Program (program.l)

/* declarations section */
AS
/* definitions of constants */
#define LT 256
/* etcetera for LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */

W}

/* regular definitions}

delim [\t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+) ?(E[+-]17{digit}+)?

40

The Lex Program (program.l)
Wh

/* translation rules section */

{us} {/* no action and no return */}

if {return(IF);}

then {return(THEN) ; }

else {return(ELSE) ; }

{id} {yylval = (int) installID(); return(ID);}

{number} {yylval = (int) installNum(); return(NUMBER);}
{yylval = LT; return(RELOP);}
{yylval = LE; return(RELOP);}
{yylval = EQ; return(RELOP);}
{yylval = NE; return(RELOP);}
{yylval = GT; return(RELOP);}
{yylval = GE; return(RELOP);}

W
/* auxiliary functions section */
int installIDO {...}

int installNum() {.
41

Lex Details

e installiD()
function to install the lexeme into the symbol table
returns pointer to symbol table entry
yytext — pointer to the first character of the lexeme
yyleng — length of the lexeme

installNum()

similar to installID, but puts numerical constants into a sep-

arate table

43

Compiler constructie

college 2
Lexical Analysis

Chapters for reading: 2.6, 2.7, 3.1-3.5

45

Regular expressions in Lex

Operator characters: \' " . ~$ [1 *+7?{} |/
EXxpression | Matches Example
non-operator character ¢ a
operator charater c literally *
string s literally Mk
any character but newline a.*b
beginning of a line ~abc
end of a line abc$
any one of the characters in string s | [abc]
any one character not in string s [~abc]
any one character between c¢; and ¢ | [a-z]
zero or more strings matching r ax
one or more strings matching r a+
r? zero or one string matching r a?
r{m,n} between m and n occurrences of r a{1,5}
T2 an r; followed by an r» ab
r1|r2 an rp or an rp alb
(r) same as r (alb)
r1/r2 r1 when followed by r» abc/123
{d} regular expression defined by d {id}

Lex Details

e Example: input "\t\tif "
— Longest initial prefix:

No action, so yytext points to
— Next lexeme is "if"

"\t\t" = ws

42

and continue

Token if is returned, yytext points to 'i’ and yyleng=2

e Ambiguity and longest pattern matching:
— Patterns if and {id} match lexeme " if"

— If input is "<=", then lexeme is " <="

. lex program.l
gce lex.yy.c -11
./a.out < input

a4

