
Compilerconstructie

najaar 2012

http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs.nl

college 2, dinsdag 11 september 2012

Lexical Analysis

1

2.6 Lexical Analyser

Reads and converts the input into a stream of tokens to be
analysed by the parser

Lexeme: Sequence of input characters comprising single token

Typical tasks of the lexical analyser
• Remove white space and comments
• Encode constants as tokens:

31 + 28+ 59 → 〈num,31〉 〈+〉 〈num,28〉 〈+〉 〈num,59〉
• Recognize keywords
• Recognize identifiers:

count = count+ increment; →
〈id,”count”〉 〈=〉 〈id,”count”〉 〈+〉 〈id,”increment”〉 〈; 〉

Lexical analyser may need to read ahead (with input buffer)

2

2.7 Symbol Table

• Symbol table holds information about source-program con-

structs (e.g., identifiers)

– string

– additional information (type, position in storage)

• Symbol table is globally accessible (to all phases of compiler)

• Information is collected incrementally by analysis phases, and

used by synthesis phases

• Implementation by Hashtable, with methods

– put (String, Symbol)

– get (String)

3

Symbol Table Per Scope

The same identifier may be declared more than once

1) { int x; int y;
2) { int w; bool y; int z;
3) ... w ...; ... x ...; ... y ...; ... z ...;
4) }
5) ... w ...; ... x ...; ... y ...;
6) }

4

Symbol Table Per Scope

The same identifier may be declared more than once

1) { int x; int y;
2) { int w; bool y; int z;
3) ... w ...; ... x ...; ... y ...; ... z ...;
4) }
5) ... w ...; ... x ...; ... y ...;
6) }

w

y

z

int

bool

int

B2:
�
�

��3

····
····

····
···k

x

y int

intB1:
�
�

��3

····
····

····
···k

w . . .

. . .
B0:

5

Translation Scheme (Example)
(from college 1)

expr → expr1 + term {print(’+’)}

expr → expr1 − term {print(’−’)}

expr → term

term → 0 {print(’0’)}

term → 1 {print(’1’)}

.

term → 9 {print(’9’)}

Example: parse tree for 9− 5+ 2

Implementation requires postorder traversal

6

The Use of Symbol Tables

program → { top = null; }
block

block → ′{′ { saved = top;
top = new Env(top);

}
decls stmts ′}′ { top = saved;

}

decls → decls decl
| ǫ

decl → type id; { s = new Symbol;
s.type = type.lexeme;
top.put(id.lexeme, s);

}

In book (edition 2) extended for real translation

7

3.1 Lexical Analyser - Parser Interaction

source
program

- Lexical
Analyser

-
token

�

getNextToken

Parser - to semantic
analysis

Symbol
Table

@
@

@
@

@@I@
@
@

@
@@R �

�
�
�

����
�

�
�

��	

8

Lexical Analyser

Reasons why it is a separate phase of a compiler

• Simplifies the design of the compiler

• Provides efficient implementation

– Systematic techniques to implement lexical analysers (by

hand or automatically)

– Stream buffering methods to scan input

• Improves portability

– Non-standard symbols and alternate character encodings

can be more easily translated

9

Tokens, Patterns and Lexemes

• Token: pair of token name and optional attribute value, e.g.,

〈id,1〉, 〈num,31〉, 〈assign op〉

• Lexeme: specific sequence of characters that makes up to-

ken, e.g., count, 31, =

• Pattern: description of form that lexemes of a token may

take, e.g.,

if: if

comparison: < or > or <= or >= or == or ! =

id: letter followed by letters and digits

10

Attributes for Tokens
E = M * C ** 2

?

Lexical
Analyser

?

〈id,pointer to symbol-table entry for E〉 〈assign op〉

〈id,pointer to symbol-table entry for M〉 〈mult op〉

〈id,pointer to symbol-table entry for C〉 〈exp op〉

〈number, integer value 2〉

?

Parser

11

Lexical Errors

• Hard to detect by lexical analyser alone, e.g.,

fi (a == f(x)) ...

• What if none of the patterns matches?

– ‘Panic mode’ recovery: delete characters until you find

well-formed token

– ∗ Delete one character from remaining input

∗ Insert missing character into remaining input

∗ Replace character by another character

∗ Transpose two adjacent characters

12

3.2 Input Buffering

Use two buffers of size N for input

• Saves time

• Allows for looking ahead one or more characters, e.g., for

– identifiers: ifoundit

– relational operators: <=

Take longest prefix of input that matches any pattern

E = M * C * * 2 eof

lexemeBegin

6

forward

6

13

Implement a Lexical Analyser

• By hand,

using transition diagram to specify lexemes

• With a lexical-analyser generator (Lex),

using regular expressions to specify lexemes:

Regular expressions →

(non-deterministic) finite automaton →

determininistic finite automaton

Input to ‘driver’

14

3.3 Specification of Tokens

Regular expressions to specify patterns for tokens

Terminology (from FI1)

• An alphabet Σ is a finite set of symbols (characters), e.g.,

{0,1}, ASCII, Unicode

• A string s is a finite sequence of symbols from Σ

– |s| denotes the length of string s, e.g., |banana| = 6

– ǫ denotes an empty string: |ǫ| = 0

• A language is a set of strings over some fixed alphabet Σ

15

String operations

• Concatenation of strings x and y is denoted as xy
e.g., if x = dog and y = house then xy = doghouse

sǫ = ǫs = s

• Exponentiation

– Define

s0 = ǫ

si = si−1s if i > 0

– Then

s1 = s

s2 = ss

s3 = sss

16

Language Operations

• Union L ∪D = {s | s ∈ L or s ∈ D}

• Concatenation LD = {xy | x ∈ L and y ∈ D}

• Exponentiation L0 = {ǫ}; Li = Li−1L if i > 0

• Kleene closure L∗ = ∪i=0,...,∞Li

(zero or more concatenation)

• Positive closure L+ = ∪i=1,...,∞Li

(one or more concatenation)

17

Language Operations (Example)

Let alphabets L = {A, B, . . . , Z, a, b, . . . , z} and D = {0,1, . . . ,9}

• L ∪D is set of letters and digits

• LD is set of strings consisting of a letter followed by a digit

• L4 is set of all four-letter strings

• L∗ is set of all finite strings of letters, including ǫ

• L(L ∪D)∗ is set of all strings of letters and digits beginning

with a letter (‘identifiers’)

• D+ is set of all strings of one or more digits (‘nonnegative

integers’)

18

Regular Expressions (Example)

In C, an identifier is a letter followed by zero or more letters or

digits (underscore is considered letter):

letter (letter | digit)∗

19

Regular Expressions (Definition)

• Each regular expression r denotes a language L(r)

• Defining rules:

– ǫ is regular expression, and L(ǫ) = {ǫ}

– if a ∈ Σ, then a is regular expression, and L(a) = {a}.

– if r and s are regular expressions, then

∗ (r) | (s) is regular expression denoting L(r) ∪ L(s)

∗ (r)(s) is regular expression denoting L(r)L(s)

∗ (r)∗ is regular expression denoting (L(r))∗

∗ (r) is regular expression denoting L(r)

20

Regular Expressions (Example)

• Remove unnecessary parentheses by assuming precedence re-

lation between ∗, concatenation, and |, e.g.,

(a) | ((b)∗(c)) is equivalent to a | b∗c

• Let Σ = {a, b}. Then the regular expression:

– a | b denotes the set {a, b}

– (a | b)(a | b) denotes the set {aa, ab, ba, bb}

– a∗ denotes the set {ǫ, a, aa, aaa, . . .}

– (a | b)∗ denotes the sets of all strings over {a, b}

– a | a∗b denotes the string a and all strings consist-

ing of zero or more a’s followed by one b

• If r and s denote the same language L, then r = s,
e.g., (a | b) = (b | a)

21

Regular Definitions

• A regular definition is a sequence of definitions of the form:

d1 → r1

d2 → r2

. . .

dn → rn

where ri is a regular expression over Σ ∪ {d1, d2, . . . , di−1}

• Obtain regular expression over Σ by . . .

22

Regular Definitions

• A regular definition is a sequence of definitions of the form:

d1 → r1

d2 → r2

. . .

dn → rn

where ri is a regular expression over Σ ∪ {d1, d2, . . . , di−1}

• Obtain regular expression over Σ by successively substituting

dj (j = 1,2, . . . , n− 1) in rj+1, . . . , rn by (rj)

23

Regular Definitions (Example)

• Identifiers in C

letter → A | B | . . . | Z | a | b | . . . | z |

digit → 0 | 1 | . . . | 9

id → letter (letter | digit)∗

• Recursion is not allowed

digit → digit(digit)∗ not OK

digits → digit(digit)∗ OK

24

Notational Shorthands

• We often use the following shorthands:

– one-or-more instance of: r+ = rr∗

– zero-or-one instance of: r? = r | ǫ

– character classes: [abd] = a | b | d

[a− z] = a | b | . . . | z

• Example, unsigned numbers:

5280, 0.01234, 6.336E4, 1.89E-4

digit → [0− 9]

digits → digit+

number → digits(.digits)?(E[+−]?digits)?

25

3.4 Recognition of Tokens

Grammar for branching statements:

stmt → if expr then stmt

| if expr then stmt else stmt

| ǫ

expr → term relop term

| term

term → id

| number

Terminals are if, then, else, relop, id and number.

These are the names of the tokens.

26

Regular Definitions for Tokens

Regular definitions describing patterns for these tokens

digit → [0− 9]

digits → digit+

number → digits(.digits)?(E[+−]?digits)?

letter → [A− Za− z]

id → letter(letter | digit)∗

if → if

then → then

else → else

relop → < | > | <= | >= | = | <>

Regular definition for white space

ws → (blank | tab | newline)+

27

Lexemes and Their Tokens

Goal:

Lexemes Token name Attribute value

Any ws – –
if if –

then then –
else else –

Any id id pointer to table entry
Any number number pointer to table entry

< relop LT

<= relop LE

= relop EQ

<> relop NE

> relop GT

>= relop GE

28

Transition Diagrams
(‘Almost finite automata’)

relop → < | > | <= | >= | = | <>

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

- - -
HHHHHHHj

@
@
@
@
@

@
@@R

J
J
J
J
J
J
J
J
J
J
JĴ

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

-
HHHHHHHj

0 1 2

3

4

5

6 7

8

∗

∗

start < =

>

other=

>

=

other

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, EQ)

return(relop, GE)

return(relop, GT)

Retract input one position, if necessary (∗)

29

Transition Diagrams

Identifiers and keywords

id → letter(letter | digit)∗

��
��

��
��

��
��
��
��

- - -9 10 11
∗start letter other

��letter or digit

?

return(getToken(), installID())

How to distinguish between identifiers and (reserved) keywords?

30

Transition Diagrams

��
��

��
��

��
��
��
��

- - -9 10 11
∗start letter other

��letter or digit

?

return(getToken(), installID())

How to distinguish between identifiers and (reserved) keywords?

Two possibilities:

• Install reserved words in symbol table initially

Used in above diagram

• Separate transition diagram for each keyword

Try these first, before the diagram for identifiers

31

From Diagram to Lexical Analyser
TOKEN getRelop ()
{ TOKEN retToken = new (RELOP);

while (1)
{ /* repeat character processing until a return

or failure occurs */
switch(state)
{ case 0: c = nextChar();

if (c == ’<’) state = 1;
else if (c == ’=’) state = 5;
else if (c == ’>’) state = 6;
else fail(); /* lexeme is not a relop */
break;

case 1: ...
...
case 8: retract();

retToken.attribute = GT;
return(retToken);

}
}

}

32

Entire Lexical Analyser

Based on transition diagrams for different tokens

How?

33

Entire Lexical Analyser

Based on transition diagrams for different tokens

Three possibilities:

• Try transition diagrams sequentially (in right order)

• Run transition diagrams in parallel

Make sure to take longest prefix of input that matches any

pattern

• Combine all transition diagrams into one

34

3.5 The Lexical-Analyser Generator Lex

Systematically translates regular definitions into C source code

for efficient scanning

Lex source program
lex.l

- Lex
compiler

- lex.yy.c

lex.yy.c - C
compiler

- a.out

Input stream - a.out - Sequence of tokens

35

Structure of Lex Programs

• A Lex program has the following form

declarations

%%

translation rules

%%

user defined auxiliary functions

• Translation rules are of the form

Pattern { Action }

Patterns are Lex regular expressions

36

Operation of Lexical Analyser

The lexical analyser generated by Lex

• Activated by parser

• Reads input character by character

• Executes action Ai corresponding to pattern Pi

• Typically, Ai returns to the parser

• If not (e.g., in case of white space), proceed to find additional

lexemes

• Lexical analyser returns single value: the token name

• Attribute value passed through global variable yylval

37

Regular Definitions for Tokens

Regular definitions describing patterns for these tokens

digit → [0− 9]

digits → digit+

number → digits(.digits)?(E[+−]?digits)?

letter → [A− Za− z]

id → letter(letter | digit)∗

if → if

then → then

else → else

relop → < | > | <= | >= | = | <>

Regular definition for white space

ws → (blank | tab | newline)+

38

Lexemes and Their Tokens

Goal:

Lexemes Token name Attribute value

Any ws – –
if if –

then then –
else else –

Any id id pointer to table entry
Any number number pointer to table entry

< relop LT

<= relop LE

= relop EQ

<> relop NE

> relop GT

>= relop GE

39

The Lex Program (program.l)
/* declarations section */
%{

/* definitions of constants */
#define LT 256

/* etcetera for LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions}
delim [\t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?

40

The Lex Program (program.l)
%%
/* translation rules section */

{ws} {/* no action and no return */}
if {return(IF);}
then {return(THEN);}
else {return(ELSE);}
{id} {yylval = (int) installID(); return(ID);}
{number} {yylval = (int) installNum(); return(NUMBER);}
"<" {yylval = LT; return(RELOP);}
"<=" {yylval = LE; return(RELOP);}
"=" {yylval = EQ; return(RELOP);}
"<>" {yylval = NE; return(RELOP);}
">" {yylval = GT; return(RELOP);}
">=" {yylval = GE; return(RELOP);}

%%
/* auxiliary functions section */
int installID() {...}
int installNum() {...}

41

Regular expressions in Lex

Operator characters: \ " . ^ $ [] * + ? { } | /

Expression Matches Example
c non-operator character c a
\c operator charater c literally *
”s” string s literally "**"
. any character but newline a.*b
ˆ beginning of a line ^abc
$ end of a line abc$
[s] any one of the characters in string s [abc]
[ˆs] any one character not in string s [^abc]
[c1 − c2] any one character between c1 and c2 [a-z]
r∗ zero or more strings matching r a*
r+ one or more strings matching r a+
r? zero or one string matching r a?
r{m,n} between m and n occurrences of r a{1,5}
r1r2 an r1 followed by an r2 ab
r1 | r2 an r1 or an r2 a|b
(r) same as r (a|b)
r1/r2 r1 when followed by r2 abc/123
{d} regular expression defined by d {id}

42

Lex Details

• installID()

function to install the lexeme into the symbol table

returns pointer to symbol table entry

yytext – pointer to the first character of the lexeme

yyleng – length of the lexeme

• installNum()

similar to installID, but puts numerical constants into a sep-

arate table

43

Lex Details

• Example: input ”\t\tif ”

– Longest initial prefix: ”\t\t” = ws

No action, so yytext points to ’i’ and continue

– Next lexeme is ”if”

Token if is returned, yytext points to ’i’ and yyleng=2

• Ambiguity and longest pattern matching:

– Patterns if and {id} match lexeme ”if”

– If input is ”<=”, then lexeme is ”<=”

• lex program.l

gcc lex.yy.c -ll

./a.out < input

44

Compiler constructie

college 2

Lexical Analysis

Chapters for reading: 2.6, 2.7, 3.1–3.5

45

