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Lexical Analysis



2.6 Lexical Analyser

Reads and converts the input into a stream of tokens to be
analysed by the parser

Lexeme: Sequence of input characters comprising single token

Typical tasks of the lexical analyser

e Remove white space and comments
e Encode constants as tokens:

31+ 28+ 59 — (num,31) (+) (num,28) (4+) (num, 59)
e Recognize keywords
e Recognize identifiers:

count = count + increment; —

(id,"” count” ) (=) (id,” count”) (4) (id,” increment”) (;)

Lexical analyser may need to read ahead (with input buffer)
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2.7 Symbol Table

e Symbol table holds information about source-program con-
structs (e.qg., identifiers)
— string
— additional information (type, position in storage)

e Symbol table is globally accessible (to all phases of compiler)

e Information is collected incrementally by analysis phases, and
used by synthesis phases

e Implementation by Hashtable, with methods
— put (String, Symbol)
— get (String)



Symbol Table Per Scope

The same identifier may be declared more than once

1) { int x; int y;

2) { int w; bool y; int z;

3) cee W oaeey e X vy e Y ey e Za
4) +

5) cee Woaee e e X e e Y e

6)



Symbol Table Per Scope

The same identifier may be declared more than once

1) { int x; int y;

2) { int w; bool y; int z;
3) e Woeee e e X ven e e Y e eee 20
4) +
5) N S A S S A
6) }
BoZ w

Bi: x| int

Y| int
By |w] int
Y \bool

z | int




Translation Scheme (Example)

(from college 1)

expr
expr
expr
term
term

L4l

expri + term {print("+')}
expri — term {print('—")}
term

0 {print("0")}

1 {print("1")}

term — 9 {print("9")}

Example: parse tree for 9 —5+42

Implementation requires postorder traversal



The Use of Symbol Tables

program —

block —

decls —
|

decl —

block

/{/

decls stmts '}

decls decl
€

type id;

N e el i

}

top = null; }
saved = top,
top = new Env(top);

top = saved,;

s = new Symbol;
s.type = type.lexeme;
top.put(id.lexeme, s);

In book (edition 2) extended for real translation



3.1 Lexical Analyser - Parser Interaction

- token .
source Lexical > P to semantic
program Analyser | « arser analysis
getNext Token
Symbol
Table




Lexical Analyser

Reasons why it is a separate phase of a compiler
e Simplifies the design of the compiler

e Provides efficient implementation

— Systematic techniques to implement lexical analysers (by
hand or automatically)

— Stream buffering methods to scan input

e Improves portability

— Non-standard symbols and alternate character encodings
can be more easily translated



Tokens, Patterns and Lexemes

e Token: pair of token name and optional attribute value, e.qg.,
(id, 1), (num, 31), (assign_op)

e Lexeme: specific sequence of characters that makes up to-
ken, e.g., count, 31, =

e Pattern: description of form that lexemes of a token may
take, e.qg.,
if. if
comparison: < or > or <= or >= or == or | =
Id: letter followed by letters and digits
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Attributes for Tokens

E =M= C *x 2

Lexical
Analyser

|

(id, pointer to symbol-table entry for E) (assign_op)
(id, pointer to symbol-table entry for M) (mult_op)
(id, pointer to symbol-table entry for C) (exp_op)

(number,integer value 2)

|

Parser
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Lexical Errors

e Hard to detect by lexical analyser alone, e.qg.,
fi (a == f(x) )

e What if nhone of the patterns matches?

— ‘Panic mode’ recovery: delete characters until you find
well-formed token

— x Delete one character from remaining input
x Insert missing character into remaining input
x Replace character by another character

x Transpose two adjacent characters
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3.2 Input Buffering

Use two buffers of size N for input
e Saves time

e Allows for looking ahead one or more characters, e.g., for
— identifiers: ifoundit
— relational operators: <=

Take longest prefix of input that matches any pattern

EL = i Mix | Coxok 2 eof

|

forward
lexemeBegin
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Implement a Lexical Analyser

e By hand,
using transition diagram to specify lexemes

e With a lexical-analyser generator (Lex),

using regular expressions to specify lexemes:

Regular expressions —
(non-deterministic) finite automaton —
determininistic finite automaton

Input to ‘driver’

14



3.3 Specification of Tokens
Regular expressions to specify patterns for tokens
Terminology (from FI1)

e An alphabet X is a finite set of symbols (characters), e.qg.,
{0,1}, ASCII, Unicode

e A string s is a finite sequence of symbols from >
— |s| denotes the length of string s, e.g., |bananal =6

— € denotes an empty string: |/ =0

e A language is a set of strings over some fixed alphabet >
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String operations

e Concatenation of strings = and y is denoted as xy
e.d., if x = dog and y = house then zy = doghouse
SE — €S — S

e EXxponentiation

— Define
SO — €
st = s ls ifi>o0
— Then
Sl - S
82 — SS
3

V)
|

SSS
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Language Operations

Union LUD={s|seLorseD}
Concatenation LD ={xy|x€ L and y € D}
Exponentiation LO = {¢}: L'=Lr0"1L ifi>0
Kleene closure L* = Uj=0.... 0oL’

(zero or more concatenation)

Positive closure LT = Uj=1.. 0ol
(one or more concatenation)
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Language Operations (Example)

Let alphabets L = {A,B,...,Z,a,b,...,z} and D ={0,1,...,9}

L UD is set of letters and digits

LD is set of strings consisting of a letter followed by a digit
L% is set of all four-letter strings

L* is set of all finite strings of letters, including e

L(L U D)* is set of all strings of letters and digits beginning
with a letter (‘identifiers’)

DT is set of all strings of one or more digits (‘nonnegative
integers’)
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Regular Expressions (Example)

In C, an identifier is a letter followed by zero or more letters or
digits (underscore is considered letter):

letter_ (letter_ | digit )*
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Regular Expressions (Definition)
e Each regular expression r denotes a language L(r)

e Defining rules:
— € is regular expression, and L(e) = {¢}
— if a € X, then a is regular expression, and L(a) = {a}.

— if  and s are regular expressions, then
x (r) | (s) is regular expression denoting L(r) U L(s)

+ (r)(s) is regular expression denoting L(r)L(s)
« (r)* is regular expression denoting (L(r))*

* (r) is regular expression denoting L(r)
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Regular Expressions (Example)

e Remove unnecessary parentheses by assuming precedence re-
lation between %, concatenation, and |, e.g.,

(a) | ((b)*(c)) is equivalent to a| b*c
e Let > = {a,b}. Then the regular expression:
—alb denotes the set {a,b}
— (a|b)(a|b) denotes the set {aa,ab,ba,bdb}
— a* denotes the set {¢,a,aa,aaa,...}
— (a | b)* denotes the sets of all strings over {a,b}
—ala'b denotes the string a and all strings consist-

ing of zero or more a’'s followed by one b

e If r and s denote the same language L, then r = s,
eg., (a|b)=(b|a)

21



Regular Definitions

e A regular definition is a sequence of definitions of the form:

d1—>’l°1
d2—>7“2

dn — Tn

where r; is a regular expression over >~ U {dy,dp,...,d;_1}

e ODbtain regular expression over > by ...
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Regular Definitions

e A regular definition is a sequence of definitions of the form:

d1—>?“1
d2—>’l“2

dn — Tn

where r; is a regular expression over > U{dq,dp,...,d;_1}

e ODbtain regular expression over > by successively substituting
di (j=1,2,...,n=1) inrj1q,...,mn by (r})
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Regular Definitions (Example)

e Identifiers in C

letter. — A|B|...|Z|a|b]|...|z]|_
digit — 0|1]...|9
id — letter_(letter_| digit)*

e Recursion is not allowed

digit — digit(digit)* not OK
digits — digit(digit)* OK

24



Notational Shorthands

e \We often use the following shorthands:
— one-or-more instance of: rt = rr*
— zero-or-one instance of: r?7=r|e€
— character classes: [abd] =a|b|d
[@a—z]=a|b]|...|z

e Example, unsigned numbers:
5280, 0.01234, 6.336E4, 1.89E-4

digit — [0 — 9]
digits — digit™
number — digits(.digits)?(E[+—]7digits)?
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3.4 Recodgnition of Tokens

Grammar for branching statements:

stmt — if expr then stmt
| if expr then stmt else stmt
G
expr — term relop term
| term
term — id
| number

Terminals are if, then, else, relop, id and number.

These are the names of the tokens.
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Regular Definitions for Tokens

Regular definitions describing patterns for these tokens

digit
digits
number
letter

id

it

then
else
relop

N

[0 —9]

digit™
digits(.digits)?(E[+—]?digits)?

[A — Za — Z]

letter(letter | digit)*

if

then

else

< | > <= >= | = | <>

Regular definition for white space

ws — (blank | tab | newline)™
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Lexemes and Their Tokens
Goal:
Lexemes Token name Attribute value
Any ws — —
if if —
then then —
else else —
Any id id pointer to table entry
Any number number pointer to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>= relop GE
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Transition Diagrams
(‘Almost finite automata’)

relop — < | > |<=|>=|=|<>

T (0)—<—~1)—"—(2) return(relop, LE)

>

N (3) return(relop, NE)

*

return(relop, LT)

return(relop, EQ)
return(relop, GE)

return(relop, GT)

Retract input one position, if necessary ()

29



Transition Diagrams

Identifiers and keywords
id — letter(letter | digit)*

letter or digit

]

tart lett th Y '
star @ e er=@o er=@ return(getToken(), installID())

How to distinguish between identifiers and (reserved) keywords?
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Transition Diagrams

letter or digit

S

*
start @ Ietter=® other=@ return(getToken(), installID())

How to distinguish between identifiers and (reserved) keywords?
Two possibilities:

e Install reserved words in symbol table initially
Used in above diagram

e Separate transition diagram for each keyword
Try these first, before the diagram for identifiers

31



From Diagram to Lexical Analyser

TOKEN getRelop ()
{ TOKEN retToken = new (RELOP);
while (1)
{ /* repeat character processing until a return
or failure occurs */

switch(state)

{ case 0: ¢ = nextChar();
if ( ¢ == ’<’ ) state = 1;
else if (c == ’=’ ) state = 5;
else if (c == ’>’ ) state = 6;
else fail(); /* lexeme is not a relop */
break;

case 1:

case 8: retract();
retToken.attribute = GT;
return(retToken) ;

32



Entire Lexical Analyser

Based on transition diagrams for different tokens
How?

33



Entire Lexical Analyser

Based on transition diagrams for different tokens
T hree possibilities:

e Try transition diagrams sequentially (in right order)

e Run transition diagrams in parallel
Make sure to take longest prefix of input that matches any
pattern

e Combine all transition diagrams into one
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3.5 The Lexical-Analyser Generator Lex

Systematically translates regular definitions into C source code

for efficient scanning

Lex source program
lex.1

lex.yy.c—m

Input stream

Lex
compiler

C
compiler

a.out

—lex.yy.cC

— a.out

Sequence of tokens
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Structure of Lex Programs

e A Lex program has the following form
declarations
%%
translation rules
%%

user defined auxiliary functions

e Translation rules are of the form
Pattern { Action }

Patterns are Lex regular expressions
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Operation of Lexical Analyser

T he lexical analyser generated by Lex

Activated by parser

Reads input character by character

Executes action A; corresponding to pattern F;
Typically, A; returns to the parser

If not (e.g., in case of white space), proceed to find additional
lexemes

Lexical analyser returns single value: the token name

Attribute value passed through global variable yylval
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Regular Definitions for Tokens

Regular definitions describing patterns for these tokens

digit
digits
number
letter

id

it

then
else
relop

I R A

[0 —9]

digit™
digits(.digits)?(E[+—]7digits)?

[A — Za — Z]

letter(letter | digit)*

if

then

else

< | > | <= o >= | = | <>

Regular definition for white space

ws — (blank | tab | newline)™
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Lexemes and Their Tokens
Goal:
Lexemes Token name Attribute value
Any ws — —
if if —
then then —
else else —
Any id id pointer to table entry
Any number number pointer to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>= relop GE
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The Lex Program (program.l)

/* declarations section */
YA
/* definitions of constants */
#define LT 256
/* etcetera for LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP x*x/

h}

/* regular definitions}

delim [ \t\n]

WS {delim}+

letter [A-Za-Z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?7(E[+-]17{digit}+) 7

40



The Lex Program (program.l)
ot

/* translation rules section */

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN) ; }

else {return(ELSE) ; }

{id} {yylval = (int) installID(); return(ID);}
{number} {yylval = (int) installNum(); return(NUMBER);}
g {yylval = LT; return(RELOP);}

ng=" {yylval = LE; return(RELOP);}

n=n {yylval = EQ; return(RELOP);}

"> {yylval = NE; return(RELOP);}

s {yylval = GT; return(RELOP);}

ny=" {yylval = GE; return(RELOP);}

YA/

/* auxiliary functions section */
int installID() {...}
int installNum() {...}



Regular expressions In Lex

Operator characters: \ "

~$[1*x+2{} 1|/

Expression | Matches Example
c non-operator character ¢ a

\c operator charater c literally \ *

s string s literally Wk !

. any character but newline a.*b

a beginning of a line ~abc

$ end of a line abc$

[s] any one of the characters in string s | [abc]
["s] any one character not in string s [~abc]
[c1 — 2] any one character between c¢; and ¢» | [a-z]
7% zero or more strings matching r ax

r—+ one or more strings matching r a+

re zero or one string matching r a?
r{m,n} between m and n occurrences of r a{1,5}
riTo an rq1 followed by an r» ab

r1 | ro an r1 Oor an ro alb

(r) same as r (alb)
r1/72 r1 when followed by r» abc/123
{d} regular expression defined by d {id}

42



Lex Details

e installiD()
function to install the lexeme into the symbol table

returns pointer to symbol table entry
yytext — pointer to the first character of the lexeme

yyleng — length of the lexeme

e installNum()
similar to installID, but puts numerical constants into a sep-

arate table
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Lex Details

e Example: input "\t\tif "

— Longest initial prefix: "\t\t" = ws
No action, so yytext points to i’ and continue
— Next lexeme is " if"

Token if is returned, yytext points to 'i’ and yyleng=2

e Ambiguity and longest pattern matching:
— Patterns if and {id} match lexeme " if"
— If input is "<=", then lexeme is " <="

© lex program.l
gcc lex.yy.c -11
./a.out < input
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Compiler constructie

college 2
Lexical Analysis

Chapters for reading: 2.6, 2.7, 3.1-3.5
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