Compilerconstructie
najaar 2012
http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs.nl

college 2, dinsdag 11 september 2012

Lexical Analysis

2.6 Lexical Analyser

Reads and converts the input into a stream of tokens to be
analysed by the parser

Lexeme: Sequence of input characters comprising single token

Typical tasks of the lexical analyser

e Remove white space and comments
e Encode constants as tokens:

31+ 28+ 59 — (num,31) (+) (num,28) (4+) (num, 59)
e Recognize keywords
e Recognize identifiers:

count = count + increment; —

(id,"” count”) (=) (id,” count”) (4) (id,” increment”) (;)

Lexical analyser may need to read ahead (with input buffer)
2

2.7 Symbol Table

e Symbol table holds information about source-program con-
structs (e.qg., identifiers)
— string
— additional information (type, position in storage)

e Symbol table is globally accessible (to all phases of compiler)

e Information is collected incrementally by analysis phases, and
used by synthesis phases

e Implementation by Hashtable, with methods
— put (String, Symbol)
— get (String)

Symbol Table Per Scope

The same identifier may be declared more than once

1) { int x; int y;

2) { int w; bool y; int z;

3) cee W oaeey e X vy e Y ey e Za
4) +

5) cee Woaee e e X e e Y e

6)

Symbol Table Per Scope

The same identifier may be declared more than once

1) { int x; int y;

2) { int w; bool y; int z;
3) e Woeee e e X ven e e Y e eee 20
4) +
5) N S A S S A
6) }
BoZ w

Bi: x| int

Y| int
By |w] int
Y \bool

z | int

Translation Scheme (Example)

(from college 1)

expr
expr
expr
term
term

L4l

expri + term {print("+')}
expri — term {print('—")}
term

0 {print("0")}

1 {print("1")}

term — 9 {print("9")}

Example: parse tree for 9 —5+42

Implementation requires postorder traversal

The Use of Symbol Tables

program —

block —

decls —
|

decl —

block

/{/

decls stmts '}

decls decl
€

type id;

N e el i

}

top = null; }
saved = top,
top = new Env(top);

top = saved,;

s = new Symbol;
s.type = type.lexeme;
top.put(id.lexeme, s);

In book (edition 2) extended for real translation

3.1 Lexical Analyser - Parser Interaction

- token .
source Lexical > P to semantic
program Analyser | « arser analysis
getNext Token
Symbol
Table

Lexical Analyser

Reasons why it is a separate phase of a compiler
e Simplifies the design of the compiler

e Provides efficient implementation

— Systematic techniques to implement lexical analysers (by
hand or automatically)

— Stream buffering methods to scan input

e Improves portability

— Non-standard symbols and alternate character encodings
can be more easily translated

Tokens, Patterns and Lexemes

e Token: pair of token name and optional attribute value, e.qg.,
(id, 1), (num, 31), (assign_op)

e Lexeme: specific sequence of characters that makes up to-
ken, e.g., count, 31, =

e Pattern: description of form that lexemes of a token may
take, e.qg.,
if. if
comparison: < or > or <= or >= or == or | =
Id: letter followed by letters and digits

10

Attributes for Tokens

E =M= C *x 2

Lexical
Analyser

|

(id, pointer to symbol-table entry for E) (assign_op)
(id, pointer to symbol-table entry for M) (mult_op)
(id, pointer to symbol-table entry for C) (exp_op)

(number,integer value 2)

|

Parser

11

Lexical Errors

e Hard to detect by lexical analyser alone, e.qg.,
fi (a == f(x))

e What if nhone of the patterns matches?

— ‘Panic mode’ recovery: delete characters until you find
well-formed token

— x Delete one character from remaining input
x Insert missing character into remaining input
x Replace character by another character

x Transpose two adjacent characters

12

3.2 Input Buffering

Use two buffers of size N for input
e Saves time

e Allows for looking ahead one or more characters, e.g., for
— identifiers: ifoundit
— relational operators: <=

Take longest prefix of input that matches any pattern

EL = i Mix | Coxok 2 eof

|

forward
lexemeBegin

13

Implement a Lexical Analyser

e By hand,
using transition diagram to specify lexemes

e With a lexical-analyser generator (Lex),

using regular expressions to specify lexemes:

Regular expressions —
(non-deterministic) finite automaton —
determininistic finite automaton

Input to ‘driver’

14

3.3 Specification of Tokens
Regular expressions to specify patterns for tokens
Terminology (from FI1)

e An alphabet X is a finite set of symbols (characters), e.qg.,
{0,1}, ASCII, Unicode

e A string s is a finite sequence of symbols from >
— |s| denotes the length of string s, e.g., |bananal =6

— € denotes an empty string: |/ =0

e A language is a set of strings over some fixed alphabet >

15

String operations

e Concatenation of strings = and y is denoted as xy
e.d., if x = dog and y = house then zy = doghouse
SE — €S — S

e EXxponentiation

— Define
SO — €
st = s ls ifi>o0
— Then
Sl - S
82 — SS
3

V)
|

SSS

16

Language Operations

Union LUD={s|seLorseD}
Concatenation LD ={xy|x€ L and y € D}
Exponentiation LO = {¢}: L'=Lr0"1L ifi>0
Kleene closure L* = Uj=0.... 0oL’

(zero or more concatenation)

Positive closure LT = Uj=1.. 0ol
(one or more concatenation)

17

Language Operations (Example)

Let alphabets L = {A,B,...,Z,a,b,...,z} and D ={0,1,...,9}

L UD is set of letters and digits

LD is set of strings consisting of a letter followed by a digit
L% is set of all four-letter strings

L* is set of all finite strings of letters, including e

L(L U D)* is set of all strings of letters and digits beginning
with a letter (‘identifiers’)

DT is set of all strings of one or more digits (‘nonnegative
integers’)

18

Regular Expressions (Example)

In C, an identifier is a letter followed by zero or more letters or
digits (underscore is considered letter):

letter_ (letter_ | digit)*

19

Regular Expressions (Definition)
e Each regular expression r denotes a language L(r)

e Defining rules:
— € is regular expression, and L(e) = {¢}
— if a € X, then a is regular expression, and L(a) = {a}.

— if and s are regular expressions, then
x (r) | (s) is regular expression denoting L(r) U L(s)

+ (r)(s) is regular expression denoting L(r)L(s)
« (r)* is regular expression denoting (L(r))*

* (r) is regular expression denoting L(r)

20

Regular Expressions (Example)

e Remove unnecessary parentheses by assuming precedence re-
lation between %, concatenation, and |, e.g.,

(a) | ((b)*(c)) is equivalent to a| b*c
e Let > = {a,b}. Then the regular expression:
—alb denotes the set {a,b}
— (a|b)(a|b) denotes the set {aa,ab,ba,bdb}
— a* denotes the set {¢,a,aa,aaa,...}
— (a | b)* denotes the sets of all strings over {a,b}
—ala'b denotes the string a and all strings consist-

ing of zero or more a’'s followed by one b

e If r and s denote the same language L, then r = s,
eg., (a|b)=(b|a)

21

Regular Definitions

e A regular definition is a sequence of definitions of the form:

d1—>’l°1
d2—>7“2

dn — Tn

where r; is a regular expression over >~ U {dy,dp,...,d;_1}

e ODbtain regular expression over > by ...

22

Regular Definitions

e A regular definition is a sequence of definitions of the form:

d1—>?“1
d2—>’l“2

dn — Tn

where r; is a regular expression over > U{dq,dp,...,d;_1}

e ODbtain regular expression over > by successively substituting
di (j=1,2,...,n=1) inrj1q,...,mn by (r})

23

Regular Definitions (Example)

e Identifiers in C

letter. — A|B|...|Z|a|b]|...|z]|_
digit — 0|1]...|9
id — letter_(letter_| digit)*

e Recursion is not allowed

digit — digit(digit)* not OK
digits — digit(digit)* OK

24

Notational Shorthands

e \We often use the following shorthands:
— one-or-more instance of: rt = rr*
— zero-or-one instance of: r?7=r|e€
— character classes: [abd] =a|b|d
[@a—z]=a|b]|...|z

e Example, unsigned numbers:
5280, 0.01234, 6.336E4, 1.89E-4

digit — [0 — 9]
digits — digit™
number — digits(.digits)?(E[+—]7digits)?

25

3.4 Recodgnition of Tokens

Grammar for branching statements:

stmt — if expr then stmt
| if expr then stmt else stmt
G
expr — term relop term
| term
term — id
| number

Terminals are if, then, else, relop, id and number.

These are the names of the tokens.

26

Regular Definitions for Tokens

Regular definitions describing patterns for these tokens

digit
digits
number
letter

id

it

then
else
relop

N

[0 —9]

digit™
digits(.digits)?(E[+—]?digits)?

[A — Za — Z]

letter(letter | digit)*

if

then

else

< | > <= >= | = | <>

Regular definition for white space

ws — (blank | tab | newline)™

27

Lexemes and Their Tokens
Goal:
Lexemes Token name Attribute value
Any ws — —
if if —
then then —
else else —
Any id id pointer to table entry
Any number number pointer to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>= relop GE

28

Transition Diagrams
(‘Almost finite automata’)

relop — < | > |<=|>=|=|<>

T (0)—<—~1)—"—(2) return(relop, LE)

>

N (3) return(relop, NE)

*

return(relop, LT)

return(relop, EQ)
return(relop, GE)

return(relop, GT)

Retract input one position, if necessary ()

29

Transition Diagrams

Identifiers and keywords
id — letter(letter | digit)*

letter or digit

]

tart lett th Y '
star @ e er=@o er=@ return(getToken(), installID())

How to distinguish between identifiers and (reserved) keywords?

30

Transition Diagrams

letter or digit

S

*
start @ Ietter=® other=@ return(getToken(), installID())

How to distinguish between identifiers and (reserved) keywords?
Two possibilities:

e Install reserved words in symbol table initially
Used in above diagram

e Separate transition diagram for each keyword
Try these first, before the diagram for identifiers

31

From Diagram to Lexical Analyser

TOKEN getRelop ()
{ TOKEN retToken = new (RELOP);
while (1)
{ /* repeat character processing until a return
or failure occurs */

switch(state)

{ case 0: ¢ = nextChar();
if (¢ == ’<’) state = 1;
else if (c == ’=’) state = 5;
else if (c == ’>’) state = 6;
else fail(); /* lexeme is not a relop */
break;

case 1:

case 8: retract();
retToken.attribute = GT;
return(retToken) ;

32

Entire Lexical Analyser

Based on transition diagrams for different tokens
How?

33

Entire Lexical Analyser

Based on transition diagrams for different tokens
T hree possibilities:

e Try transition diagrams sequentially (in right order)

e Run transition diagrams in parallel
Make sure to take longest prefix of input that matches any
pattern

e Combine all transition diagrams into one

34

3.5 The Lexical-Analyser Generator Lex

Systematically translates regular definitions into C source code

for efficient scanning

Lex source program
lex.1

lex.yy.c—m

Input stream

Lex
compiler

C
compiler

a.out

—lex.yy.cC

— a.out

Sequence of tokens

35

Structure of Lex Programs

e A Lex program has the following form
declarations
%%
translation rules
%%

user defined auxiliary functions

e Translation rules are of the form
Pattern { Action }

Patterns are Lex regular expressions

36

Operation of Lexical Analyser

T he lexical analyser generated by Lex

Activated by parser

Reads input character by character

Executes action A; corresponding to pattern F;
Typically, A; returns to the parser

If not (e.g., in case of white space), proceed to find additional
lexemes

Lexical analyser returns single value: the token name

Attribute value passed through global variable yylval

37

Regular Definitions for Tokens

Regular definitions describing patterns for these tokens

digit
digits
number
letter

id

it

then
else
relop

I R A

[0 —9]

digit™
digits(.digits)?(E[+—]7digits)?

[A — Za — Z]

letter(letter | digit)*

if

then

else

< | > | <= o >= | = | <>

Regular definition for white space

ws — (blank | tab | newline)™

338

Lexemes and Their Tokens
Goal:
Lexemes Token name Attribute value
Any ws — —
if if —
then then —
else else —
Any id id pointer to table entry
Any number number pointer to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>= relop GE

39

The Lex Program (program.l)

/* declarations section */
YA
/* definitions of constants */
#define LT 256
/* etcetera for LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP x*x/

h}

/* regular definitions}

delim [\t\n]

WS {delim}+

letter [A-Za-Z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?7(E[+-]17{digit}+) 7

40

The Lex Program (program.l)
ot

/* translation rules section */

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN) ; }

else {return(ELSE) ; }

{id} {yylval = (int) installID(); return(ID);}
{number} {yylval = (int) installNum(); return(NUMBER);}
g {yylval = LT; return(RELOP);}

ng=" {yylval = LE; return(RELOP);}

n=n {yylval = EQ; return(RELOP);}

"> {yylval = NE; return(RELOP);}

s {yylval = GT; return(RELOP);}

ny=" {yylval = GE; return(RELOP);}

YA/

/* auxiliary functions section */
int installID() {...}
int installNum() {...}

Regular expressions In Lex

Operator characters: \ "

~$[1*x+2{} 1|/

Expression | Matches Example
c non-operator character ¢ a

\c operator charater c literally \ *

s string s literally Wk !

. any character but newline a.*b

a beginning of a line ~abc

$ end of a line abc$

[s] any one of the characters in string s | [abc]
["s] any one character not in string s [~abc]
[c1 — 2] any one character between c¢; and ¢» | [a-z]
7% zero or more strings matching r ax

r—+ one or more strings matching r a+

re zero or one string matching r a?
r{m,n} between m and n occurrences of r a{1,5}
riTo an rq1 followed by an r» ab

r1 | ro an r1 Oor an ro alb

(r) same as r (alb)
r1/72 r1 when followed by r» abc/123
{d} regular expression defined by d {id}

42

Lex Details

e installiD()
function to install the lexeme into the symbol table

returns pointer to symbol table entry
yytext — pointer to the first character of the lexeme

yyleng — length of the lexeme

e installNum()
similar to installID, but puts numerical constants into a sep-

arate table

43

Lex Details

e Example: input "\t\tif "

— Longest initial prefix: "\t\t" = ws
No action, so yytext points to i’ and continue
— Next lexeme is " if"

Token if is returned, yytext points to 'i’ and yyleng=2

e Ambiguity and longest pattern matching:
— Patterns if and {id} match lexeme " if"
— If input is "<=", then lexeme is " <="

© lex program.l
gcc lex.yy.c -11
./a.out < input

44

Compiler constructie

college 2
Lexical Analysis

Chapters for reading: 2.6, 2.7, 3.1-3.5

45

