
Compilerconstructie

najaar 2012

http://www.liacs.nl/home/rvvliet/coco/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs.nl

college 1, dinsdag 4 september 2012

Overview

1

Why this course

It’s part of the general background of a software engineer

• How do compilers work?

• How do computers work?

• What machine code is generated for certain language con-

structs?

• Working on a non-trivial programming project

After the course

• Know how to build a compiler for a simplified progr. language

• Know how to use compiler construction tools, such as gen-

erators for scanners and parsers

• Be familiar with compiler analysis and optimization tech-

niques

2

Course Outline

• In class, we discuss the the-

ory using the ‘dragon book’ by

Aho et al.

• The theory is applied in the

practicum to build a compiler

that converts Pascal code to

MIPS instructions.

A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman,

Compilers: Principles, Techniques, & Tools,

Addison-Wesley, 2007, ISBN: 978-0-321-49169-5 (international edition).

3

Course Outline

• In class, we discuss the the-

ory using the ‘dragon book’ by

Aho et al.

• The theory is applied in the

practicum to build a compiler

that converts Pascal code to

MIPS instructions.

A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman,

Compilers: Principles, Techniques, & Tools,

Addison-Wesley, 2006, ISBN: 978-0-321-54798-9.

4

Earlier edition

• Dragon book has been revised

in 2006

• In Second edition good im-

provements are made

– Parallelism

∗ . . .

∗ Array data-dependence

analysis

• First edition may also be used

A.V. Aho, R. Sethi, and J.D. Ullman,

Compilers: Principles, Techniques, and Tools,

Addison-Wesley, 1986, ISBN-10: 0-201-10088-6 / 0-201-10194-7 (interna-

tional edition).

5

Course Outline

• Contact

– Room 124, tel. 071-5275777, rvvliet(at)liacs.nl

– Course website: http://www.liacs.nl/home/rvvliet/coco

Lecture slides, assignments, grades

• Practicum

– 4 self-contained assignments

– These assignments are done by groups of two persons

– Assignments are submitted by e-mail

– Assistants: Teddy Zhai, Sven van Haastregt

6

Course Outline

• Grading:

Combination of the grades from the written exam and the

practicum

• You need to pass all 4 assignments to obtain a grade

• Final grade is only accepted if all grades are ≥ 5.5

• Then, you obtain 6 EC

Studying only from the lecture slides may not be sufficient.

Relevant book chapters will be given.

7

Course Outline

(tentative)

1. Overview

2. Lexical Analysis

3. Syntax Analysis Part 1

4. Syntax Analysis Part 2

5. Assignment 1

6. Static Type Checking

7. Assignment 2

8. Intermediate Code Generation

9. Assignment 3

10. Code Generation

11. Code optimization

12. Assignment 4

13. Daedalus

8

Practicum

• Assignment 1: Calculator

• Assignment 2: Parsing & Syntax tree

• Assignment 3: Intermediate code

• Assignment 4: Assembly generation

2 academic hours of Lab session + 3 weeks to complete (except

assignment 1)

9

Short History of Compiler Construction

Formerly ‘a mystery’, today one of the best known areas of

computing

1957 Fortran first compilers

(arithmetic expressions, statements, procedures)

1960 Algol first formal language definition

(grammars in Backus-Naur form, block structure, recursion,

. . .)

1970 Pascal user-defined types, virtual machines (P-code)

1985 C++ object-orientation, exceptions, templates

1995 Java just-in-time compilation

We only consider imperative languages

Functional languages (e.g., Lisp) and logical languages (e.g.,

Prolog) require different techniques.

10

Compilers and Interpreters
• Compilation:

Translation of a program written in a source language into a

semantically equivalent program written in a target language

Source
Program

- Compiler

?

Error messages

- Target
Program

Input

?

?

Output

• Interpretation:

Performing the operations implied by the source program.

Source Program

Input

-

-
Interpreter

?

Error messages

- Output

11

Compilers and Interpreters

• Compiler: Translates source code into machine code,

with scanner, parser, . . . , code generator

• Interpreter: Executes source code ‘directly’,

with scanner, parser

Statements in, e.g., a loop are scanned and parsed again and

again

12

Compilers and Interpreters

• Hybrid compiler (Java):

– Translation of a program written in a source language into

a semantically equivalent program written in an interme-

diate language (bytecode)

– Interpretation of intermediate program by virtual machine,

which simulates physical machine

Source
Program

- Translator

?

Error messages

- Intermed.
Program

- Virtual
Machine

Input

?

?

Output

13

Analysis-Synthesis Model of Compilation

There are two parts to compilation:

• Analysis

– Determines the operations implied by the source program

which are recorded in an intermediate representation, e.g.,

a tree structure

• Synthesis

– Takes the intermediate representation and translates the

operations therein into the target program

14

Other tools that use A-S Model

• Editors (syntax highlighting, text auto completion)

• Text formatters (LATEX, MS Word)

15

Compilation flow

source program

?

Preprocessor

?
modified source program

Compiler

?
target assembly program

Assembler

?
relocatable machine code

Linker/Loader
¾

library files
relocatable object files

?

target machine code
16

The Phases of a Compiler

Symbol
Table

source program / character stream

?

Lexical Analyser (scanner)

?

Syntax Analyser (parser)

?

Semantic Analyser

?

Intermediate Code Generator

?

Code optimizer

?

Code Generator

?

target machine code

17

The Phases of a Compiler

Character stream:

position = intitial + rate * 60

Lexical Analyser (scanner)

Token stream:

〈id,1〉 〈=〉 〈id,2〉 〈+〉 〈id,3〉 〈∗〉 〈60〉

18

The Phases of a Compiler

Token stream:

〈id,1〉 〈=〉 〈id,2〉 〈+〉 〈id,3〉 〈∗〉 〈60〉

Syntax Analyser (parser)

Parse/syntax tree

©©©©
HHHHH

©©©©
HHHHH

©©©©
HHHHH

=

〈id,1〉 +

〈id,2〉 ∗

〈id,3〉 60

19

The Phases of a Compiler

Parse/syntax tree

©©©©
HHHHH

©©©©
HHHHH

©©©©
HHHHH

=

〈id,1〉 +

〈id,2〉 ∗

〈id,3〉 60

Semantic Analyser (parser)

©©©©
HHHHH

©©©©
HHHHH

©©©©
HHHHH

=

〈id,1〉 +

〈id,2〉 ∗

〈id,3〉 inttofloat

60
20

The Phases of a Compiler
Parse/syntax tree

©©©©
HHHHH

©©©©
HHHHH

©©©©
HHHHH

=

〈id,1〉 +

〈id,2〉 ∗

〈id,3〉 inttofloat

60

Intermediate Code Generator

Intermediate code (three-address code):

t1 = inttofloat(60)

t2 = id3 * t1

t3 = id2 + t2

id1 = t3

21

The Phases of a Compiler

Intermediate code (three-address code):

t1 = inttofloat(60)

t2 = id3 * t1

t3 = id2 + t2

id1 = t3

Code Optimizer

t1 = id3 * 60.0

id1 = id2 + t1

22

The Phases of a Compiler

t1 = id3 * 60.0

id1 = id2 + t1

Code Generator

LDF R2, id3

MULF R2, R2, #60.0

LDF R1, id2

ADDF R1, R1, R2

STF id1, R1

23

The Grouping of Phases

• Front End:

scanning, parsing, semantical analysis

(source code → intermediate representation)

• Back End:

code optimizing, code generation

(intermediate representation → target machine code)

language-dependent

Java

C

Pascal

machine-dependent

Pentium

PowerPC

SPARC

hhhhhhhhhhhhhhhhhh

PPPPPPPPPPPPPPPPPP

((((((((((((((((((

hhhhhhhhhhhhhhhhhh³³³³³³³³³³³³³³³³³³

((((((((((((((((((

24

Passes: Single-Pass Compilers

Phases work in an interleaved way

do

scan token

parse token

check token

generate code for token

while (not eof)

Portion of code is generated while reading portion of source

program

25

Passes: Multi-Pass Compilers

Phases are separate ‘programs’, which run sequentially

characters → Scanner → tokens → Parser → tree

→ Semantical analyser → . . .→ code

Each phase reads from a file and writes to a new file.

Time vs memory

Why multi-pass?

• If the language is complex

• If portability is important

Today: often two-pass compiler

26

Compiler-Construction Tools

Software development tools are available to implement one or

more compiler phases

• Scanner generators

• Parser generators

• Syntax-directed translation engines

• Automatic code generators

• Data-flow engines

27

The Structure of our compiler

Character
stream

- Lexical
Analyser

-

Token
Stream Syntax-Directed

Translation
-

MIPS
Assembly

Code

¡
¡

¡
¡

¡
¡

¡
¡
¡µ

A
A

A
A

A
A

A
A
AK

Develop a parser and code generator

Syntax Definition (Grammar) MIPS Specification

Syntax directed translation:

The compiler uses the syntactic structure of the language to

generate output

28

What is a grammar?

Context-free grammar is a 4-tuple with

• A set of tokens (terminal symbols)

• A set of nonterminals (syntactic variables)

• A set of productions: rules how to decompose nonterminals

• A designated start/ symbol (nonterminal)

Example: Context-free grammar for simple expressions:

G = ({list,digit}, {+,−,0,1,2,3,4,5,6,7,8,9}, P, list)

with productions P:

list → list + digit

list → list − digit

list → digit

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

29

Derivation

Given a context-free grammar, we can determine the set of all

strings (sequences of tokens) generated by the grammar using

derivations:

• We begin with the start symbol

• In each step, we replace one nonterminal in the current form

with one of the right-hand sides of a production for that

nonterminal

30

Derivation (Example)

G = ({list,digit}, {+,−,0,1,2,3,4,5,6,7,8,9}, P, list)

list → list + digit | list − digit | digit

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Example: 9-5+2

list ⇒ list + digit

⇒ list − digit + digit

⇒ digit − digit + digit

⇒ 9 − digit + digit

⇒ 9 − 5 + digit

⇒ 9 − 5 + 2

This is an example of leftmost derivation, because we replaced
the leftmost nonterminal (underlined) in each step

31

Parse Tree

(derivation tree in FI2)

• The root of the tree is labelled by the start symbol

• Each leaf of the tree is labelled by a terminal (=token) or ǫ

(=empty)

• Each interior node is labelled by a nonterminal

• If node A has children X1, X2, . . . , Xn, then there must be a

production A → X1X2 . . . Xn

32

Parse Tree (Example)

Parse tree of the string 9− 5 + 2 using grammar G

³³³³³³³³³³

Q
Q

QQ

´
´

´́
Q

Q
QQ

list

list digit

list digit

digit

9 − 5 + 2

Yield of the parse tree: the sequence of leafs (left to right)

Parsing: the process of finding a parse tree for a given string

Language: the set of strings that can be generated by some parse tree

33

Ambiguity

Consider the following context-free grammar:

G′ = ({string}, {+,−,0,1,2,3,4,5,6,7,8,9}, P, string)

with productions P

string → string + string | string − string | 0 | 1 | . . . | 9

This grammar is ambiguous, because more than one parse tree

generates the string 9− 5 + 2

34

Ambiguity (Example)

Parse trees of the string 9− 5 + 2 using grammar G′

³³³³³³³³³³

Q
Q

QQ

´
´

´́
Q

Q
QQ

string

string string

string string

9 − 5 + 2

(9 − 5) + 2 = 6

´
´

´́

PPPPPPPPPP

´
´

´́
Q

Q
QQ

string

string string

string string

9 − 5 + 2

9 − (5 + 2) = 2

35

Associativity of Operators

By convention

9 + 5 + 2 = (9 + 5) + 2
9 − 5 − 2 = (9 − 5) − 2

}

left associative

In most programming languages:

+,−, ∗, / are left associative

∗∗,= are right associative:

a ∗ ∗b ∗ ∗c = a ∗ ∗(b ∗ ∗c)
a = b = c = a = (b = c)

36

Precedence of Operators

Consider: 9 + 5 ∗ 2

Is this (9 + 5) ∗ 2 or 9 + (5 ∗ 2) ?

Associativity does not resolve this

Precedence of operators:

+ −
∗ /

?

increasing
precedence

A grammar for arithmetic expressions:

expr → expr + term | expr − term | term

term → term ∗ factor | term/factor | factor

factor → digit | (expr)

digit → 0 | 1 | . . . | 9

Parse tree for 9 + 5 ∗ 2 . . .

37

Syntax-Directed Translation

Using the syntactic structure of the language to generate output

corresponding to some input

Two techniques:

• Syntax-directed definition

• Translation scheme

Example: translation of infix notation to postfix notation

infix postfix

(9 − 5) + 2 95 − 2+
9 − (5 + 2) 952 + −

What is 952 + −3∗ ?

38

Syntax-Directed Translation

Using the syntactic structure of the language to generate output

corresponding to some input

Two variants:

• Syntax-directed definition

• Translation scheme

Example: translation of infix notation to postfix notation

Simple infix expressions generated by

expr → expr1 + term | expr1 − term | term

term → 0 | 1 | . . . | 9

39

Syntax-Directed Definition

• Uses a context-free grammar to specify the syntactic struc-

ture of the language

• Associates a set of attributes with (non)terminals

• Associates with each production a set of semantic rules for

computing values for the attributes

• The attributes contain the translated form of the input after

the computations are completed

(in example: postfix notation corresponding to subtree)

40

Syntax-Directed Definition (Example)

Production Semantic rule

expr → expr1 + term expr.t = expr1.t || term.t || ‘+′

expr → expr1 − term expr.t = expr1.t || term.t || ‘−′

expr → term expr.t = term.t
term → 0 term.t = ‘0′

term → 1 term.t = ‘1′

.
term → 9 term.t = ‘9′

Result: annotated parse tree

Example: 9 − 5 + 2

41

Synthesized and Inherited Attributes

An attribute is said to be . . .

• synthesized if its value at a parse tree node N is determined

from attribute values at the children of N (and at N itself)

• inherited if its value at a parse tree node N is determined

from attribute values at the parent of N (and at N itself and

its siblings)

We consider synthesized attributes

42

Depth-First Traversal

• A syntax-directed definition does not impose an evaluation

order of the attributes on a parse tree

• Different orders might be suitable

• Tree traversal: a specific order to visit the nodes of a tree

(always starting from the root node)

• Depth-first traversal

– Start from root

– Recursively visit children (in any order)

– Hence, visit nodes far away from the root as quickly as it

can (DF)

43

A Possible DF Traversal

Postorder traversal

procedure visit (node N)

{

for (each child C of N, from left to right)

{ visit (C);

}

evaluate semantic rules at node N;

}

Can be used to determine synthesized attributes / annotated

parse tree

44

Translation Scheme

A translation scheme is a context-free grammar

with semantic actions embedded in the bodies of the productions

Example

rest → +term {print(’+’)} rest1

#
#

#
#

#
#

#
#

#

¶
¶

¶
¶

¶
¶

¶

...............

c
c

c
c

c
c

c
cc

rest

+ term {print(’+’)} rest1

45

Translation Scheme (Example)

expr → expr1 + term {print(’+’)}

expr → expr1 − term {print(’−’)}

expr → term

term → 0 {print(’0’)}

term → 1 {print(’1’)}

.

term → 9 {print(’9’)}

Example: parse tree for 9 − 5 + 2

Implementation requires postorder traversal

46

Parsing

• Process of determining if a string of tokens can be generated

by a grammar

• For any context-free grammar, there is a parser that takes

at most O(n3) time to parse a string of n tokens

• Linear algorithms sufficient for parsing programming languages

• Two methods of parsing:

– Top-down constructs parse tree from root to leaves

– Bottom-up constructs parse tree from leaves to root

Cf. top-down PDA and bottom-up PDA in FI2

47

Parsing (Top-Down Example)

stmt → expr ;

| if (expr)stmt

| for (optexpr ;optexpr ;optexpr)stmt

| other

optexpr → ǫ

| expr

How to determine parse tree for

for (;expr ;expr)other

Use lookahead: current terminal in input

48

Predictive Parsing

• Recursive-descent parsing is a top-down parsing method:

– Executes a set of recursive procedures to process the input

– Every nonterminal has one (recursive) procedure parsing

the nonterminal’s syntactic category of input tokens

• Predictive parsing is a special form of recursive-descent pars-

ing:

– The lookahead symbol unambiguously determines the pro-

duction for each nonterminal

49

Predictive Parsing (Example)
void stmt()
{ switch (lookahead)

{ case expr:
match(expr); match(’;’); break;

case if:
match(if); match(’(’); match(expr); match(’)’); stmt();
break;

case for:
match(for); match(’(’);
optexpr(); match(’;’); optexpr(); match(’;’); optexpr();
match(’)’); stmt(); break;

case other;
match(other); break;

default:
report("syntax error");

}
}

void match(terminal t)
{ if (lookahead==t) lookahead = nextTerminal;

else report("syntax error");
}

50

Using FIRST

• Let α be string of grammar symbols

• FIRST(α) is the set of terminals that appear as first symbols

of strings generated from α

Simple example:

stmt → expr ;

| if (expr)stmt

| for (optexpr ;optexpr ;optexpr)stmt

| other

Right-hand side may start with nonterminal. . .

51

Using FIRST

• Let α be string of grammar symbols

• FIRST(α) is the set of terminals that appear as first symbols

of strings generated from α

• When a nontermimal has multiple productions, e.g.,

A → α | β

then FIRST(α) and FIRST(β) must be disjoint in order for

predictive parsing to work

52

Compiler constructie

college 1

Overview

Chapters for reading: 1.1, 1.2, 2.1-2.5

53

