CCSS Programming Contest 2015

Exclusively for students attending the
Challenges in Computer Science Seminar
2014-2015 at Leiden University

Problems
A Alternate Routes
B Burning CDs
C Competitive Programming
D Dice
E

European Energy Union

This is not a blank page

Problem A: Alternate Routes 3

A Alternate Routes

Andrew lives in downtown Manhattan (New York), where the
streets are layed out in blocks of long galleries separated by
parallel streets. In order to be able to move around easily,
Andrew and his friends decided to live close to an intersection.
Whenever Andrew visits one of his friends, he first travels the
right number of blocks in the north—south direction and then in
the east—west direction. For example, in the example depicted
on the right he first travels seven blocks to the north and then
another five blocks to the east.

Andrew recently befriended a philosopher named Brian. After
talking to Andew about his travel routine, Brian noticed that
there are many alternate routes that Andrew might take, many
of which have the same length as his usual route. However,
being a philosopher, Brian is not so good at math. Can you
help the two of them calculate the number of shortest routes)
from Andrew’s to Brian’s?

Input
The input starts with a line containing an integer 7', the number of test cases. Then for each test case:

e One line with two space separated integers N and E satisfying —1000 < N < 1000 as well as
—1000 < E < 1000. These denote the number of blocks Andrew has to travel to the north and
to the east, respectively. A negative number is used if Andrew has to travel to the south (in case
N < 0) or to the west (in case E < 0).

Output

For each test case, output one line with a single integer R, the number of shortest routes from Andrew’s
to Brian’s. Since this can become quite large, you must reduce your answer modulo 123456789. (No
answer greater than or equal to 123456789 or strictly smaller than 0 will be accepted.)

Sample input and output

Input Output

4 792

75 1

0 -10 35

-3 -4 69229809
123 456

This is not a blank page

Problem B: Burning CDs 5

B Burning CDs

Good old fashioned uncle Bernard relies on his good old fashioned CD player
to play music in his living room. He has selected some of his favourite good
old fashioned songs and wants to burn them onto his good old fashioned
CDs from the 1990s, using his good old fashioned CD burner from that same
era, because—as he keeps telling at family dinners—sure, you can fit days
and days of that new crappy music on a flash card the size of your finger
nail, but you just cannot do that to good old fashioned music. Good old
fashioned music needs space. If you put good old fashioned music on a CD
that fits 80 minutes or more, you can just hear that it feels crammed.

Needless to say, uncle Bernard’s CDs do not fit 80 minutes. Uncle Bernard’s computer, however, is
entirely up-to-date. “You have to fight fire with fire,” your uncle says, “new crappy viruses need new
crappy software to stop them. They are nothing like the good old fashioned chain e-mails that Bill
Gates used to send.” In particular, his new crappy CD burning software assumes that CDs can fit 80
minutes of music, and as such keeps ruining his good old fashioned CDs.

To solve this issue, uncle Bernard has asked you to do some good old fashioned programming to
fix his CD burning software, in exchange for a good old fashioned balloon. You have narrowed the
problem down to this: Given the track list and the playing time of the CD, you have to determine how
much time is left on the CD.

Input
The input starts with a line containing an integer 7', the number of test cases. Then for each test case:

e One line with an integer N, the number of tracks, satisfying 1 < N < 99. Then on the same line
the playing time of the CD is shown, which is at least 60 minutes and at most 80 minutes.

e One line with N times, the durations of each of the tracks from the track list. Each song lasts
at least 4 seconds and at most 80 minutes.

Each time is formatted as m:s, that is: the number of minutes immediately followed by a colon and
the number of seconds. The number of minutes m never starts with additional leading zeroes. On the
other hand, the number of seconds s is always formatted as a two-digit number. This is illustrated in
the samples below.

Output

For each test case, output one line indicating the time remaining (in case the playlist fits on the CD)
or the time overrun (in case it doesn’t fit). Follow the format from the samples below.

Sample input and output

Input Output

4 58:49 remaining
3 74:00 0:28 remaining
6:41 5:28 3:02 1:04 too long

6 67:43 0:00 remaining
30:00 20:00 10:00 5:00 2:00 0:15

3 75:00

20:43 25:09 30:12

5 65:43

11:52 13:37 9:09 12:59 18:06

This is not a blank page

Problem C: Competitive Programming 7

C Competitive Programming

You find yourself participating in a programming contest. Using your psychic abilities, for each problem
you know in advance:

e the exact moment when you will think of the solution (measured from the beginning of the
contest);

e the amount of time it will take you to implement the solution in code.

Time spent programming does not affect the first prediction: by using teamwork you can think of
solutions while implementing another problem in code. Since your team has only one computer at its
disposal, you can only write code for one problem at a time. Obviously you cannot start working on
the code for a particular problem before you figure out how to solve it.

For each problem you have already written down the time predictions. (This will be the input.)
Now all you have to do is decide which problems to implement in code and which problems to ignore.
The goal is of course to get the best possible final score. (A brief summary of the scoring procedure
can be found on the next page.)

Input
The input starts with a line containing an integer 7', the number of test cases. Then for each test case:

e One line with two integers D and N, denoting the contest duration (in minutes) and the number
of problems. These satisfy 60 < D < 600 and 1 < N < 15.

e N lines with two integers S; and C;, where S; denotes the moment in time when you think of
the solution to problem 4 (measured in minutes after the start of the contest) and C; denotes the
time it takes to implement problem ¢ in code (also in minutes). These satisfy 0 < S; < D and
1<C; < D.

Output

For each test case, output one line containing two space separated integers K and P, where K is the
number of problems you solve before the end of the contest and P is the total penalty time. You
should choose your strategy so as to maximise K and minimise P.

Sample input and output

Input Output
3 2 170
300 2 3 100
0 100 2 100
50 10
300 3
0 10
0 20
0 30
60 3
10 30
30 30
40 20

8 Problem C: Competitive Programming

Scoring

Scoring in ICPC-style programming contests is done in the following way. The score for a team consists
of two numbers:

e First of all, the number of problems solved.

e Secondly, the total penalty time. Whenever you solve a problem, the penalty time for that
problem will be the number of minutes that have passed since the start of the contest, plus an
additional 20 minutes for every wrong submission you made before solving the problem. The
total penalty time is the sum of the penalty times for the individual problems. No penalty time
is incurred for a problem that isn’t solved by the end of the contest, even if you make various
unsuccessful attempts.

Teams are ranked according to these numbers, first by increasing number of problems solved (more
problems is better) and then by decreasing total penalty time (less penalty time is better). Thus, when
optimising the final score, you must first make sure to solve as many problems as possible, and then
solve them in an order such that the total penalty time is as small as possible.

In the first sample test case above, you must divide your computer time in the following way:

minutes | 0-50 | 50— 60 | 60110 | 110 - 300

work on problem H 1 ‘ 2 ‘ 1 ‘ (none)

Then the penalty time for problem 1 is 110 minutes, and for problem 2 it is 60 minutes. Thus, the total
penalty time is 170 minutes, which is optimal. In this problem we never make wrong submissions, so
we never incur the additional 20 minutes penalty time for wrong submissions. However, submissions
might still be wrong in the contest you are currently participating in!

Problem D: Dice 9

D Dice

The Centre for Concoction of Silly Stratagems (CCSS) has been playing a new game that has recently
been rising in popularity among students: Dice Linkage Face-off (DLF). The game is played as follows:
two players A and B are supplied with N identical dice, each of which has 6 sides denoting various
integers from the interval {1,...,9}. Different sides may depict the same number.

The players then take turns placing a piece at the front of a line of dice. A line of dice is said to
be forbidden if it has a subline consisting of two or more consecutive dice that splits into two smaller
consecutive sublines with the same sum. For example, the line of dice in the example below is forbidden
because it contains the subline (1, 3, 1, 4, 1) that splitsinto 1 + 3 + 1 =4 + 1.

o o (BN] (N J
{ 2N [o ([J
T) [I) [BN)
Note that in particular no two consecutive dice may have the same value. The player to win the game
is the last player to place a dice without making the line forbiddden. Players must therefore avoid
forbidden configurations for as long as possible.
Daniel and Dominique are tired of playing the game, so they start analysing it. They wonder if it’s
possible for the game not to have a winner. Can you run out of dice before the line becomes forbidden?

This turns out to be a difficult question to solve by hand, so they have asked for your help. Can you
figure out how many lines consisting of N dice are allowed (that is, not forbidden)?

Input
The input starts with a line containing an integer 7', the number of test cases. Then for each test case:
e One line with a single integer N, satisfying 1 < N < 10, which denotes the number of dice.

e One line with six (not necessarily distinct) integers between 1 and 9, denoting the values on the
sides of the dice.

Output

For each test case, output a single line containing an integer L, denoting the number of lines of N dice
that are not forbidden.

Sample input and output

Input Output
4 0

3 2
111111 1334

3 451132
111211

5

123456

10

345¢6 78

Note that two lines are considered to be equal if they show the same values in the same order. If
multiple sides have the same value, we don’t distinguish between those sides. In the second example,
there are two allowed lines: (1,2,1) and (2,1,2). Therefore the answer is 2, even though we might
turn one of the dice showing 1 to a different side which also shows 1.

This is not a blank page

Problem E: European Energy Union 11

E European Energy Union

The European Union wants to be less dependent
on Russia for its natural gas supply. Therefore a
FEuropean Energy Union is emerging, with the goal
of building gas pipes between all European cities
so that gas can flow from any city to any other
city. Some cities already have gas pipes between
them, others don’t. You have been hired to calcu-
late the minimum number of gas pipes that need
to be added so that gas can flow from any city to
any other city, possibly via other cities. All gas
pipes are bidirectional.

Input
The input starts with a line containing an integer 7', the number of test cases. Then for each test case:

e One line with two space-separated integers C' and P, denoting the number of cities and the
number of existing pipes respectively. These satisfy 1 < C' <2000 and 0 < P <1000 000.

e P lines with two space-separated integers X and Y, denoting that there is a bidirectional gas
pipe between cities X and Y. These satisfy 1 < X <Y < C. No pair of cities will be listed more
than once.

Output

For each test case, output the minimum number of bidirectional gas pipes that need to be added so
that all cities are connected.

Sample input and output

Output

[
=

ie]
=
o+

N W O

N P J 0 W o N R Ww R WD
O 1 0O o b DD oy O W w b w w

This is not a blank page

