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4.1 In each case say which language is generated by the CFG G with the
productions as indicated.
a. L(G) = {a, b}∗.
b. L(G) = {a, b}∗{a}.
c. L(G) = {ba}∗{b}.
d. L(G) = {x ∈ {a, b}∗ | bb does not occur in x}.
e. L(G) = {a}∗{b}{a}∗{b}{a}∗, i.e. the language of all words with exactly
two occurrences of b.
f. L(G) = {xaybxr, xbyaxr | x, y ∈ {a, b}∗ ∧ y = yr}, i.e. the language of all
words which are palindromes over {a, b} with exactly one single “mistake”.
g. L(G) = {x ∈ {a, b}∗ | |x| is even }.
h. L(G) = {x ∈ {a, b}∗ | |x| is odd }.

4.3 Find a context-free grammar generating the given language.
a. For L = {xay | x, y ∈ {a, b}∗ ∧ |x| = |y|}, the CFG with productions
S → aSa | aSb | bSa | bSb | a
b. For L = {xaay, xbby | x, y ∈ {a, b}∗ ∧ |x| = |y|}, the CFG with
S → aSa | aSb | bSa | bSb | aa | bb
c. For L = {a, b} ∪ {axaya, bxbyb | x, y ∈ {a, b}∗ ∧ |x| = |y|}, the CFG with
S → a | b | aAa | bBb, A → aAa | aAb | bAa | bAb | a, B → aBa | aBb | bBa | bBb | b

4.4 The productions of two context-free grammars are given. Prove that
neither one generates the language L = {x ∈ {a, b}∗ | na(x) = nb(x)}, the
language consisting of all words with an equal number of a’s and b’s.
a. S → SabS |SbaS |Λ
Clearly, every word generated by this grammar has an equal number of a’s
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and b’s, but it cannot generate every word of L: Every non-empty word
generated by this grammar is of the form xaby or xbay with both x and y

also generated by S. Hence if x (or y) is non-empty it also contains at least
one occurrence of ab or ba. This implies that aabb cannot be generated even
though it is in L.
b. S → aSb | bSa | abS | baS |Sab |Sba |Λ
Clearly, every word generated by this grammar has an equal number of a’s
and b’s, but it cannot generate every word of L: Every non-empty word
generated by this grammar is of the form ayb, bya, aby, bay, yab, or yba

with y also a word generated by the grammar. Consequently, x = aabbbbaa

cannot be generated even though x ∈ L.

4.5 S → aSbScS | aScSbS | bSaScS | bScSaS | cSaSbS | cSbSaS |Λ .
Does the CFG G with these productions generate the language
L = {x ∈ {a, b, c}∗ | na(x) = nb(x) = nc(x)}?
No. Since every production introduces an equal number of a’s, b’s, and c’s,
it is clear that L(G) is included in L. Thus the question is whether G can
generate every word in L. This turns out to be not the case.
Consider aabbcc ∈ L. Any derivation of this word has to start with an
application of the production S → aSbScS because we need an a in the first
place and b’s have to precede c’s. To derive aabbcc from aSbScS, rewriting
the first occurrence of S should lead to the terminal word a or ab, but this
is impossible, because each word derivable from S has an equal number of
a’s, b’s, and c’s (as observed before).

• Give a CFG that generates all regular expressions over an alphabet Σ.
For simplicity, let us assume Σ = {a, b}. It is easy to generalize the

result below to other aplphabets. De terminal symbols includes all elements
of Σ, the operators {+, ·,∗ , (, )}, and distinct symbols for ∅ en Λ, say φ en
λ, respetively. We construct a grammar with starting symbol S and with
the following productions:

S → (S + S) | (S · S) | (S∗) | a | b | λ | φ .

4.10 Find a CFG for each of the given langages.
a. S → aSb | B and B → bB | Λ.
b. S → aSb | B and B → bB | b.
c. S → aSbb | Λ.
d. S → aSb | aSbb | Λ.

2



e. S → aSBB | Λ and B → b | Λ.
f. S → aSBB | a | ab and B → b | Λ.

• Find a CFG for each of the given langages.
a. L = {aibjck | i = j+ k}. Thus each word in L has the form akajbjck and
such words are exactly generated by the CFG with productions
S → aSc |T , T → aTb |Λ.
e. L = {aibjck | i < j ∨ i > k}. Thus each word in L is of the form aibibnck

or akanbjck for some n ≥ 1. Such words are exactly generated by the CFG
with productions
S → XC |A
X → aXb |Xb | b, C → Cc |Λ,
Y → aY c | aY | aZ, Z → bZ |Λ.
h. L = {aibj | i ≤ j ≤ 2i}. Thus each word in L is in {a}i{b, bb}i for some
i ≥ 0. These words are exactly generated by the CFG with productions
S → aSb | aSbb |Λ.

4.25 Given a language L ⊆ Σ∗ we need to prove that a., b. and c. are
equivalent.
a. implies b.: it follows directly because regular grammars are a special
case of the grammars specified in b.

b. implies a.: Let L be a language generated by a grammar with productions
of the form A → xB or A → Λ with A,B variables and x ∈ Σ∗. First we find
an equivalent grammar without unit productions (i.e. without productions
A → xB with |x| = 0) using Theorem 4.28. In the resulting grammar, we
look at all its productions. If A → xB with |x| = 1 we leave it as is, but if
x = a1a2 · · · an for n ≥ 2 and each ai ∈ Σ, then we substitute A → xB by
a sequence of productions A → a1X1, X1 → a2X2, . . . , Xn−2 → an−1Xn−1,
Xn−1 → anB, with X1, . . . , Xn−1 new variable symbols.

The new grammar so obtained is clearly regular and generates the same
language as the original grammar.
a. implies c.: Assume L is regular. Because the regular languages are closed
under reversal, the language Lr = {yr | y ∈ L}, where yr is the reverse of
y. is also regular. Hence, there exists a regular grammar for Lr. Now, it is
enough to change every production A → σB in this grammar into A → Bσ.
The language of the resulting grammar is the reverse of Lr, and thus equal
to L. Clearly, this grammar is a special case of the grammar specified in c.

c. implies a.: We first transform each production A → Bx into A → xrB,
where xr is the reverse of x. The new grammar generates Lr = {yr | y ∈ L}.
Because this grammar is of the form as specified in b., its language Lr is
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regular (because b. implies a.). Since regular language are closed under
reversal, the original language L must be regular, too.

4.26 Draw NFAs accepting the languages generated by the given grammars.
a. S → aA | bC, A → aS | bB, B → aC | bA, C → aB | bS |Λ
This is a regular grammar. Using the construction given in the proof of
Theorem 4.14, we obtain the following NFA accepting L(G).

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏✍✌✎☞

✲ ✲
✛

✲
✛

✲
✛S A B C

a

a

b

b

a

a

✤ ✜b

❄

✣ ✢
b

✻

Now it is not difficult to see that
L(G) = {x ∈ {a, b}∗ | na(x) is even and nb(x) is odd }.
S corresponds to “even number of a’s and even number of b’s”
A corresponds to “odd number of a’s and even number of b’s”
B corresponds to “odd number of a’s and odd number of b’s”
C corresponds to “even number of a’s and odd number of b’s”.
b. S → bS | aA |Λ, A → aA | bB | b, B → bS

In principle, we again use the construction given in the proof of Theo-
rem 4.14, to obtain an NFA accepting L(G). Only the production A → b

does not satisfy the definition of a regular grammar. For that production,
we introduce a special accepting state F , reachable from state A with a
transition labelled by b, and without outgoing transitions. The result is:

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✍✌✎☞

✍✌✎☞
✲ ✲ ✲

❄

S A B

F

a b

b

✞☎b
❄

✞☎a
❄

✫ ✪
b

✻

From this automaton we can read the regular expression (b∗aa∗bb)∗b∗(Λ +
aa∗b) which describes L(G).
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4.27 See the FA M in Figure 4.33. The regular grammar G with L(G) =
L(M) constructed from M as in Theorem 4.14 has the productions:
A → aB | bD |Λ, B → aB | bC, C → aB | bC |Λ, D → aD | bD.
This grammar has A as its starting symbol. Note that the state D is a ’sink’
state and that, consequently, the productions relating to D can be safely
omitted from the grammar without affecting the successful derivations (and
hence the generated language). This yields:
A → aB |Λ, B → aB | bC, C → aB | bC |Λ.

4.28 Given is the CFG with productions:
S → abA | bB | aba, A → b | aB | bA, B → aB | aA.
This grammar is not a regular grammar but we transform it into an equiv-
alent regular CFG G:
S → aX | bB | aY , X → bA, Y → bZ, Z → aF ,
A → bF | aB | bA, B → aB | aA, F → Λ.
Next we apply the method from the proof of Theorem 4.14 and obtain an
NFA accepting L(G):

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏✍✌✎☞

✲

✻

❄

✲

❍❍❍❍❍❍❍❍❍❍❍❍❥

✲

✲

✲

❍❍❍❍❍❍❍❍❍❍❍❍❨

❄

S

B

Y

X

Z

A

F

b

a

a

a

b

b

a

a

b

✞☎a
❄

☎✆b✛

4.29 Each of the given grammars, though not regular, generates a regular
language. Find for each a regular grammar (a CFG with only productions
of the form X → aY and X → Λ) generating its language.
a. S → SSS | a | ab
The only non-terminating production for S is S → SSS, which means that
the number of occurrences of S in the current string increases with 2 each
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time this production is used. Terminating productions can be postponed
until no production S → SSS will be applied anymore. Since we begin with
one S, this means that just before termination we will have an odd number
of S’s. Termination of S yields for every occurrence of S either a or ab.
Hence L(G) consists of an odd number of concatenated a or ab strings:
L(G) = ({a, ab}{a, ab})∗{a, ab} which is indeed a regular language.
A regular grammar for this language would be (with starting symbol Z):
Z → aU | aV | aF | aB, B → bF , V → bU , U → aZ | aW , W → bZ,
F → Λ
b. S → AabB, A → aA | bA |Λ, B → Bab |Bb | ab | b
It is easy to see that from A the language {a, b}∗ is generated.
From B we obtain the language {ab, b}{ab, b}∗ = {ab, b}∗{ab, b}.
Consequently L(G) = {a, b}∗{ab}{ab, b}∗{ab, b}, a regular language.
A regular grammar for this language would be (with starting symbol Z):
Z → aZ | bZ | aB, B → bY , Y → aX | bF | bY , X → bF | bY , F → Λ
c. S → AAS | ab | aab, A → ab | ba |Λ
As long as no terminating productions have been used every string derived
from S consists of an even number of A’s followed by an S. Upon termination
the S will be rewritten into ab or aab, while each A yields ab or ba or Λ. An
even number of concatenated A’s yields a string consisting of an arbitrary
number of concatenated occurrences of ab and ba. Note that this number is
not necessarily even, since any A may also be rewritten into Λ.
Consequently, L(G) = {ab, ba}∗{ab, aab}, a regular language.
A regular grammar for this language would be (with starting symbol Z):
Z → aY | bX, X → aZ, Y → bZ | bF | aW , W → bF , F → Λ

d. S → AB, A → aAa | bAb | a | b, B → aB | bB |Λ
From A we generate the language consisting of all odd-length palindromes
over {a, b}, which is not a regular language! However B generates {a, b}∗.
Thus L(G) consists of words formed by an odd-length palindrome followed
by an arbitrary word over {a, b}. Now note that every non-empty word over
{a, b} can be seen as an a or b (both odd-length palindromes) followed by
an arbitrary word over {a, b}. Consequently, L(G) = {a, b}+, a regular lan-
guage after all!
A regular grammar for this (easy) language would be (with starting symbol
Z): Z → aZ | bZ | aF | bF , F → Λ
e. S → AA |B, A → AAA |Ab | bA | a, B → bB | b
Clearly, every occurrence of B generates {b}+. Because of S → B, this
implies that {b}+ ⊆ L(G).
The other production for S is S → AA. Each A can surround itself with
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any number of b’s before either terminating as a or producing two more
A’s. Eventually, each A from S → AA, yields an odd number of a’s, to-
gether with an arbitrary number of b’s at arbitrary positions. Hence after
S ⇒ AA we can produce any word over {a, b} with an even (non-zero)
number of a’s. Together with {b}+ ⊆ L(G), this implies that L(G) =
({b}∗{a}{b}∗{a}{b}∗)+∪{b}+, i.e., all non-empty strings with an even num-
ber of a’s.
A regular grammar for this language would be (with starting symbol Z):
Z → aY | bZ | bF , Y → bY | aZ | aF , F → Λ

4.34 Consider the CFG with productions: S → a |Sa | bSS |SSb |SbS. This
grammar is ambiguous, the word abaa has two different leftmost derivations:
S ⇒ SbS ⇒ abS ⇒ abSa ⇒ abaa and S ⇒ Sa ⇒ SbSa ⇒ abSa ⇒ abaa.

4.35 Consider the context-free grammar with productions
S → AB, A → aA | Λ, B → ab | bB | Λ
This grammar is NOT unambiguous, even though every derivation of a string
from S has to begin with S → AB, and any string derivable from A has
only one derivation from A and likewise for B.
There are strings in L(G) which have more than one derivation tree (more
than one leftmost derivation). Examples are ab and aab:
S ⇒ AB ⇒ B ⇒ ab and S ⇒ AB ⇒ aAB ⇒ aB ⇒ abB ⇒ ab;
S ⇒ AB ⇒ aAB ⇒ aB ⇒ aab and S ⇒ AB ⇒ aAB ⇒ aaAB ⇒ aaB ⇒
aabB ⇒ aab.

4.36 We look at the grammars given in Exercise 4.1. For each of them we
have to decide if the grammar is ambiguous or not. We discuss here b, c, d,
e, f and g. Grammars a and h are both not ambiguous, as it can be proved
in a similar manner as for grammar g.
b The grammar given in b is ambiguous. This follows from the two different
leftmost derivations for aaa:

S ⇒ SS ⇒ SSS ⇒3 aaa

and
S ⇒ SS ⇒ aS ⇒ aSS ⇒2 aaa .

c and d The grammar given c and d are ambiguous. This follows from the
two different leftmost derivations for the word babab:

S ⇒ SaS ⇒ SaSaS ⇒3 babab
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and
S ⇒ SaS ⇒ baS ⇒ baSaS ⇒2 babab .

e This grammar is ambiguous. We have the following two leftmost deriva-
tions for abab:

S ⇒ TT ⇒ aTT ⇒ aTaT ⇒ abaT ⇒ abab

and
S ⇒ TT ⇒ TaT ⇒ aTaT ⇒2 abab .

f First of all note that since all productions have at most one non-terminal
at the right hand side, every derivation is a leftmost one.

Next we prove by induction on the length of x ∈ Σ∗ that if S ⇒∗ x then
this is the only derivation of x from S, and that if A ⇒∗ x then this is the
only derivation of x from A.
(Induction base) n = 0 then x = Λ. Λ is not derivable from S because
every production of S introduce a terminal. But A ⇒∗ Λ, because A ⇒ Λ.
Clearly this is the only derivation of Λ from A, because all other productions
introduce terminals.
(Induction step) Assume the above statement holds for all strings of length
strictly smaller than x ∈ Σ∗ such that S ⇒∗ x or A ⇒∗ x.

Assume S ⇒∗ x. If x = aya then the first step in the derivation of x
from S must be S ⇒ aSa. Thus S ⇒∗ y. But y is strictly smaller than x,
and, by induction hypothesis, the derivation S ⇒∗ y is unique. Thus also
that of x from S is unique. The case when x = byb is similar. If x = ayb

then the first step in the derivation of x from S must be S ⇒ aAb. Thus
A ⇒∗ y, and by induction hypothesis it follows that the latter derivation is
unique. And thus so also that of x from S is unique. The case when x = bya

is similar.
If A ⇒∗ x we have four cases. The case x = aya and byb can be treated

as above. If x = a or x = b then A ⇒ x is immediately the unique derivation
for x from A. The case x = Λ is not necessary because is treated in the base
of the induction.
g The proof is similar to f. First we note that since all productions have at
most one non-terminal at the right hand side every derivations is a leftmost
one. Next we prove by induction on the length of x ∈ Σ∗ that if S ⇒∗ x

then this is the only derivation of x from S, and that if T ⇒∗ x then this is
the only derivation of x from T .
(Induction base) n = 0 then x = Λ. We have that S ⇒∗ Λ, because
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S ⇒ Λ. This is the only derivation of Λ from S, because all other productions
introduce terminals. Further, Λ is not derivable from T , because every
production of T introduce a terminal.
(Induction step) Assume the above statement holds for all strings of length
strictly smaller than x ∈ Σ∗, with S ⇒∗ x or T ⇒∗ x.

Assume S ⇒∗ x. If x = ay then the first step in the derivation of x from
S must be S ⇒ aT . Thus T ⇒∗ y. But y is strictly smaller than x, and, by
induction hypothesis, the derivation T ⇒∗ y is unique. Thus also that of x
from S is unique. The case when x = by is similar.

Assume T ⇒∗ x If x = ay then the first step in the derivation of x from
T must be T ⇒ aS. Thus S ⇒∗ y. But y is strictly smaller than x, and, by
induction hypothesis, the derivation S ⇒∗ y is unique. Thus also that of x
from T is unique. The case when x = by is similar.

4.38

We have to show that a given grammar is ambiguous and we have to give a
non-ambiguous grammar generating the same language.
a. S → SS | a | b
According to this grammar the string aba has two different leftmost deriva-
tions: S ⇒ SS ⇒ aS ⇒ aSS ⇒ abS ⇒ aba and
S ⇒ SS ⇒ SSS ⇒ aSS ⇒ abS ⇒ aba.
The two derivation trees are as follows:

S

S S

b

S S a

a

S

S S

Sa

b

S

a

With the exception of the empty string Λ, all strings over {a, b} can be
generated, that is the regular language {a, b}+.
An equivalent regular grammar is then : S → aX | bX X → aX | bX |Λ .
This grammar is not ambiguous because it is a regular grammar stemming
from a deterministic finite automaton.
b. S → ABA A → aA |Λ B → | bB |Λ
According to this grammar , the word a has two different leftmost derivations
: S ⇒ ABA ⇒ aABA ⇒3 a and
S ⇒ ABA ⇒ BA ⇒ A ⇒ aA ⇒ a.
The corresponding derivation trees look like this:
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S

Λ

Λ Λ

B A

S

A B A

a A

A

Λ Λ

Λ

a A

The grammar generates words of 0 or more a’s followed by 0 or more b’s fol-
lowed by 0 or more a’s, i.e., the language denoted by the regular expression
a ∗ b ∗ a∗. An equivalent regular grammar is:
S → aS | bX |Λ X → bX | aY |Λ Y → aY |Λ .
This grammar is not ambiguous, because its underlying finite automaton is
clearly deterministic. For example, the word a has the unique derivation
S ⇒ aS ⇒ Λ.
c. S → aSb | aaSb |Λ .
According to this grammar , the word aaab has two different leftmost deriva-
tions : S ⇒ aSb ⇒ aaaSb ⇒ aaab and
S ⇒ aaSb ⇒ aaaSb ⇒ aaab .
The grammar generates the words consisting of a number of a’s followed by
a number of b’s where the number of a’s is at least as large as the number
of b’s but no more than twice as large, i.e, the language {aibj | j ≤ i ≤ 2j}.
The ambiguity of the given grammar is caused by the extra a’s that can be
added at any time. The following grammar generates the same language,
but first generates one a for each b, and once two a’s for a b are generated,
the grammar continues to do so until the derivation stops. Thus, we have
an additional non-terminal in order to be able to separate two processes:
S → aSb |Λ | aaAb A → aaAb |Λ .
This grammar in not ambiguous, because the only derivation of each string
of the form aj+kbj , where 0 ≤ k ≤ j, is
S ⇒j ajSbj ⇒ ajbj if k = 0 and
S ⇒j−k aj−kSbj−k ⇒ aj−kaaAbbj−k ⇒k−1 aj−k+2a2(k−1)Abk−1bj−k+1 ⇒
aj+kbj if k ≥ 1.

4.39 Let G be a regular grammar (note that Λ 6∈ L(G)). Convert G into an
NFA MG as in the proof of Theorem 4.14. Make MG deterministic (using
the subset construction) and transform the resulting FA M in an equivalent
unambiguous regular grammar.

• Let G be a context-free grammar with start variable S and the following
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productions:

S → aSbS | bSaS | Λ

This grammar generates AEqB = {x ∈ {a, b}∗ | na(x) = nb(x)} and is

ambiguous.

c. Give an unambiguous context-free grammar for AEqB.
An element x of AEqB is either Λ, or starts with a or starts with b. If x

starts with a, then there must be a corresponding b, i.e., an occurrence of b
that causes the number of a’s and the number of b’s in the current prefix of x
to be equal, for the first time (after the starting a). Let us write x = aybz,
where y is the substring between the starting a and its corresponding b.
This substring y is an element of AEqB and has the additional property
that each prefix of y has at least as many a’s as b’s. Such substrings y can
be generated by the following context-free grammar:

Sa → aSabSa | Λ

Analogously, strings y in AEqB with the additional property that each prefix
of y has at least as many b’s as a’s can be generated by the following context-
free grammar:

Sb → bSbaSb | Λ

To generate AEqB , we add the following productions:

S → aSabS | bSbaS | Λ

4.48 Let G = (V,Σ, S, P ) be a CFG. According to Definition 4.26, a variable
is nullable if and only if it has a production with righthand-side Λ or a
production with righthand-side consisting of nullable variables only.
We have to prove that for all A ∈ V it holds that A is nullable if and only
if A ⇒∗ Λ in G.
Let A ∈ V . First assume that A is nullable. We use (structural) induction.
If A is nullable because of the production A → Λ, then we have immediately
that A ⇒ Λ. Otherwise there is a production A → B1B2 . . . Bn with n ≥ 1
and all Bi’s nullable variables. Assume that for 1 ≤ i ≤ n, we indeed
have Bi ⇒

∗ Λ (induction hypothesis). Then by the induction hypothesis,
A ⇒ B1B2 . . . Bn ⇒∗ B2 . . . Bn ⇒∗ Bn ⇒∗ Λ as desired.
Next assume that A ⇒m Λ in G for some m ≥ 1 (the case m = 0 does not
occur). We prove by induction on m that A is nullable. If m = 1, then
A ⇒ Λ. This implies that A → Λ is a production of G and so A is nullable.
Let k ≥ 1 and assume that whenever B ⇒m Λ for some m ≤ k, then B is
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nullable (induction hypothesis). Then consider the case A ⇒k+1 Λ. This
implies that the first production used in this derivation has been of the form
A → B1 . . . Bn for some n ≥ 1. Thus A ⇒ B1 . . . Bn ⇒k Λ. Consequently,
for each 1 ≤ i ≤ n, we have Bi ⇒

ki Λ where 1 ≤ ki ≤ k. By the induction
hypothesis each Bi is nullable and so also A is nullable.

4.49 Find a CFG without Λ-productions that generates the same language
(except for Λ) as the given CFG. We apply the algorithm from Theorem 4.27.
a. CFG G is given as S → AB |Λ, A → aASb | a, B → bS.
Starting fromN0 = ∅, we find that the nullable variables areN1 = {S} = N2.
Modify the productions: S → AB |Λ, A → aASb | aAb | a, B → bS | b.
Finally, remove the Λ productions to obtain G′ with
S → AB, A → aASb | aAb | a, B → bS | b.
Note that S is nullable. Thus (see Exercise 4.48) S ⇒∗ Λ which implies that
Λ ∈ L(G). Hence, in this case L(G)− L(G′) = {Λ}.
b. CFG G is given as
S → AB |ABC, A → BA |BC |Λ | a,
B → AC |CB |Λ | b, C → BC |AB |A | c.
The nullable variables are obtained as N3 = N2 = {S,A,B,C} from
N0 = ∅, N1 = {A,B}, N2 = N1 ∪ {S,C}.
Modify the productions (duplicates not included):
S → AB |A |B |Λ |ABC |BC |AC |C, A → BA |B |A |BC |C |Λ | a,
B → AC |A |C |CB |B |Λ | b, C → BC |B |C |Λ |AB |A | c.
Finally, remove the Λ productions and X → X productions to obtain G′

S → AB |A |B |ABC |BC |AC |C, A → BA |B |BC |C | a,
B → AC |A |C |CB | b, C → BC |B |AB |A | c.
Note that S is nullable and so Λ ∈ L(G). Hence, also in this case L(G) −
L(G′) = {Λ}.

4.50 For each grammar G given, find a CFG G′ without Λ-productions
and without unit productions such that L(G′) = L(G) − {Λ}. We apply
Theorem 4.27 (Note that eliminating Λ-productions may introduce new unit
productions, whereas eliminating unit productions does not introduce Λ-
productions.)
a. G has productions S → ABA, A → aA |Λ, B → bB |Λ.
Elimination of nullable productions: all variables of G are nullable, because
N3 = N2 = N1 ∪ {S} with N1 = {A,B}.
Modifying the productions leads to
S → ABA |BA |AA |AB |B |A |Λ, A → aA | a |Λ, B → bB | b |Λ.
Then we delete the Λ-productions and we obtain:
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S → ABA |BA |AA |AB |B |A, A → aA | a, B → bB | b.
Elimination of unit productions: Both A and B are S-derivable; since neither
A nor B have unit productions, there are no variables that are A-derivable
or B-derivable.
A is S-derivable, so we add S → aA and S → a;
B is S-derivable, so we add S → bB and S → b.
Then we delete all unit productions.
Consequently we arrive at the CFG G′ defined by
S → ABA |BA |AA |AB | bB | b | aA | a, A → aA | a, B → bB | b.

4.51, 4.52, 4.53 These exercises are all concerned with reducing CFGs
in the sense that superfluous symbols (those that can never be used in a
successful derivation) are removed. Let G = (V,Σ, S, P ) be a CFG.

4.51 Live variables:
A is live (in G) iff there exists an x ∈ Σ∗ such that A ⇒∗ x.
Recursive definition/algorithm:
N0 = ∅,
Ni+1 = Ni ∪ {A ∈ V | ∃x ∈ (Ni ∪ Σ)∗ with A → x ∈ P} for all i ≥ 0.
In particular, N1 = {A ∈ V | ∃x ∈ Σ∗ with A → x ∈ P}.
The algorithm terminates if Nk+1 = Nk for some k ≥ 0.

4.52 Reachable variables:
A is reachable (in G) iff there exists α, β ∈ (V ∪ Σ)∗ such that S ⇒∗ αAβ.
Recursive definition/algorithm:
N0 = {S} and, for all i ≥ 0,
Ni+1 = Ni ∪ {A ∈ V | ∃B ∈ Ni for which ∃α1, α2 ∈ (V ∪ Σ)∗ with B →
α1Aα2 ∈ P}.
The algorithm terminates if Nk+1 = Nk for some k ≥ 0.

4.53 Useful variables:
A is useful (in G) iff there exists α, β ∈ (V ∪ Σ)∗ and x ∈ Σ∗ such that
S ⇒∗ αAβ ⇒∗ x. Thus if A is useful, it is reachable and live.
c.i. Note that only useful variables appear in successful derivations (and
vice versa: each useful variable appears in some successful derivation). As
discussed in a. we can find for each CFG an equivalent CFG in which
all variables are useful by first eliminating all dead variables and then all
non-reachable ones. As an example consider the grammar G given by the
productions
S → ABC |BaB, A → aA |BaC | aaa, B → bBb | a, C → CA |AC.
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First determine the live variables: N0 = ∅, N1 = {A,B}, N2 = N1 ∪ {S},
N3 = N2.
Eliminate the remaining (“dead”) variables (in this case C) from G:
S → BaB, A → aA | aaa, B → bBb | a.
Next determine (in the new grammar) the reachable variables: N0 = {S},
N1 = N0 ∪ {B}, N2 = N1.
Eliminate the remaining, unreachable, variables (in this case A) from G:
S → BaB, B → bBb | a.
This grammar generates L(G) and is “reduced” (all its variables are useful).
Finally, note that eliminating dead variables may make others unreachable:
For the example just worked out, eliminating S → ABC (because C is
dead) makes A unreachable. On the other hand, eliminating non-reachable
variables does not affect the liveness of the (reachable) others.

4.54 Construct for each grammar G given, a grammar G′ in CNF with
L(G′) = L(G)− {Λ}.
a. G with productions S → SS | (S) |Λ.
1. Eliminate the Λ-production from G which yields G1 with productions
S → SS | (S) | (). The newly introduced production S → S is removed
together with the Λ-production. L(G1) = L(G)− {Λ}.
2. There are no unit productions (left).
3. Finally, adapt to CNF; first we get S → SS |LSR |LR, L → (, R →);
next we have S → SS |LX |LR, X → SR, L → (, R →),
which are the productions of G′ and L(G′) = L(G1) = L(G)− {Λ}.

• Let G = (V,Σ, S, P ) be a CFG in Chomsky normal form and x ∈ L(G)
with |x| = k for some k ≥ 1. We compute the number of derivation steps
needed to generate x.
As in the beginning of Section 4.5, we consider, for words w ∈ (V ∪ Σ)∗,
their length |w| and the number of occurrences of terminals which appear
in them: t(w). Let N(w) = |w| + t(w). Thus N(S) = 1 and N(x) =
|x|+ t(x) = k + k = 2k for our given x. Since G is in CNF its productions
are of the form A → BC or A → a. Consequently, applying a production in
a single derivation step u ⇒ v either increases the length by 1 or increases
the number of terminal occurrences by 1. In other words: N(v) = N(u)+1.
Since N(x)−N(S) = 2k − 1, it follows that a (each!) derivation of x from
S in G consists of 2k − 1 derivation steps.

Version of 11 November 2024. Feel free to mention any errors in these solutions at
rvvliet@liacs.nl
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