Automata Theory Answer to selected exercises 4 John C Martin: Introduction to Languages and the Theory of Computation Fourth edition

Rudy van Vliet (and Marcello Bonsangue and Jetty Kleijn)

Fall 2024

4.1 In each case say which language is generated by the CFG G with the productions as indicated.

a. $L(G) = \{a, b\}^*$. **b.** $L(G) = \{a, b\}^* \{a\}$. **c.** $L(G) = \{ba\}^* \{b\}$. **d.** $L(G) = \{x \in \{a, b\}^* \mid bb \text{ does not occur in } x\}$. **e.** $L(G) = \{a\}^* \{b\} \{a\}^* \{b\} \{a\}^*, \text{ i.e. the language of all words with exactly two occurrences of <math>b$. **f.** $L(G) = \{xaybx^r, xbyax^r \mid x, y \in \{a, b\}^* \land y = y^r\}$, i.e. the language of all words which are palindromes over $\{a, b\}$ with exactly one single "mistake". **g.** $L(G) = \{x \in \{a, b\}^* \mid |x| \text{ is even }\}$.

h. $L(G) = \{x \in \{a, b\}^* \mid |x| \text{ is odd } \}.$

4.3 Find a context-free grammar generating the given language.

a. For $L = \{xay \mid x, y \in \{a, b\}^* \land |x| = |y|\}$, the CFG with productions $S \to aSa \mid aSb \mid bSa \mid bSb \mid a$

b. For $L = \{xaay, xbby \mid x, y \in \{a, b\}^* \land |x| = |y|\}$, the CFG with $S \rightarrow aSa \mid aSb \mid bSa \mid bSb \mid aa \mid bb$

c. For $L = \{a, b\} \cup \{axaya, bxbyb \mid x, y \in \{a, b\}^* \land |x| = |y|\}$, the CFG with $S \rightarrow a \mid b \mid aAa \mid bBb$, $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid a$, $B \rightarrow aBa \mid aBb \mid bBa \mid bBb \mid b$

4.4 The productions of two context-free grammars are given. Prove that neither one generates the language $L = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$, the language consisting of all words with an equal number of a's and b's. **a.** $S \to SabS \mid SbaS \mid \Lambda$

Clearly, every word generated by this grammar has an equal number of a's

and b's, but it cannot generate every word of L: Every non-empty word generated by this grammar is of the form xaby or xbay with both x and y also generated by S. Hence if x (or y) is non-empty it also contains at least one occurrence of ab or ba. This implies that aabb cannot be generated even though it is in L.

b. $S \rightarrow aSb \mid bSa \mid abS \mid baS \mid Sab \mid Sba \mid \Lambda$

Clearly, every word generated by this grammar has an equal number of a's and b's, but it cannot generate every word of L: Every non-empty word generated by this grammar is of the form ayb, bya, aby, bay, yab, or yba with y also a word generated by the grammar. Consequently, x = aabbbbaa cannot be generated even though $x \in L$.

4.5 $S \rightarrow aSbScS | aScSbS | bSaScS | bScSaS | cSaSbS | cSbSaS | \Lambda$. Does the CFG *G* with these productions generate the language

 $L = \{x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x)\}?$

No. Since every production introduces an equal number of a's, b's, and c's, it is clear that L(G) is included in L. Thus the question is whether G can generate *every* word in L. This turns out to be not the case.

Consider $aabbcc \in L$. Any derivation of this word has to start with an application of the production $S \to aSbScS$ because we need an a in the first place and b's have to precede c's. To derive aabbcc from aSbScS, rewriting the first occurrence of S should lead to the terminal word a or ab, but this is impossible, because each word derivable from S has an equal number of a's, b's, and c's (as observed before).

• Give a CFG that generates all regular expressions over an alphabet Σ .

For simplicity, let us assume $\Sigma = \{a, b\}$. It is easy to generalize the result below to other apphabets. De terminal symbols includes all elements of Σ , the operators $\{+, \cdot, ^*, (,)\}$, and distinct symbols for \emptyset en Λ , say ϕ en λ , respetively. We construct a grammar with starting symbol S and with the following productions:

$$S \rightarrow (S+S) \mid (S \cdot S) \mid (S^*) \mid a \mid b \mid \lambda \mid \phi .$$

4.10 Find a CFG for each of the given langages. **a.** $S \rightarrow aSb \mid B$ and $B \rightarrow bB \mid \Lambda$. **b.** $S \rightarrow aSb \mid B$ and $B \rightarrow bB \mid b$. **c.** $S \rightarrow aSbb \mid \Lambda$. **d.** $S \rightarrow aSb \mid aSbb \mid \Lambda$. **e.** $S \rightarrow aSBB \mid \Lambda \text{ and } B \rightarrow b \mid \Lambda$. **f.** $S \rightarrow aSBB \mid a \mid ab \text{ and } B \rightarrow b \mid \Lambda$.

• Find a CFG for each of the given langages.

a. $L = \{a^i b^j c^k \mid i = j + k\}$. Thus each word in L has the form $a^k a^j b^j c^k$ and such words are exactly generated by the CFG with productions $S \to aSc \mid T, \quad T \to aTb \mid \Lambda.$

e. $L = \{a^i b^j c^k \mid i < j \lor i > k\}$. Thus each word in L is of the form $a^i b^i b^n c^k$ or $a^k a^n b^j c^k$ for some $n \ge 1$. Such words are exactly generated by the CFG with productions

$$\begin{split} S &\to XC \mid A \\ X &\to aXb \mid Xb \mid b, \quad C \to Cc \mid \Lambda, \\ Y &\to aYc \mid aY \mid aZ, \quad Z \to bZ \mid \Lambda. \end{split}$$

h. $L = \{a^i b^j \mid i \leq j \leq 2i\}$. Thus each word in L is in $\{a\}^i \{b, bb\}^i$ for some $i \geq 0$. These words are exactly generated by the CFG with productions $S \to aSb \mid aSbb \mid \Lambda$.

4.25 Given a language $L \subseteq \Sigma^*$ we need to prove that a., b. and c. are equivalent.

a. implies **b.**: it follows directly because regular grammars are a special case of the grammars specified in *b*.

b. implies **a.**: Let *L* be a language generated by a grammar with productions of the form $A \to xB$ or $A \to \Lambda$ with *A*, *B* variables and $x \in \Sigma^*$. First we find an equivalent grammar without unit productions (i.e. without productions $A \to xB$ with |x| = 0) using Theorem 4.28. In the resulting grammar, we look at all its productions. If $A \to xB$ with |x| = 1 we leave it as is, but if $x = a_1a_2\cdots a_n$ for $n \ge 2$ and each $a_i \in \Sigma$, then we substitute $A \to xB$ by a sequence of productions $A \to a_1X_1, X_1 \to a_2X_2, \ldots, X_{n-2} \to a_{n-1}X_{n-1},$ $X_{n-1} \to a_nB$, with X_1, \ldots, X_{n-1} new variable symbols.

The new grammar so obtained is clearly regular and generates the same language as the original grammar.

a. implies **c.**: Assume L is regular. Because the regular languages are closed under reversal, the language $L^r = \{y^r \mid y \in L\}$, where y^r is the reverse of y is also regular. Hence, there exists a regular grammar for L^r . Now, it is enough to change every production $A \to \sigma B$ in this grammar into $A \to B\sigma$. The language of the resulting grammar is the reverse of L^r , and thus equal to L. Clearly, this grammar is a special case of the grammar specified in **c**. **c**. implies **a**.: We first transform each production $A \to Bx$ into $A \to x^r B$, where x^r is the reverse of x. The new grammar generates $L^r = \{y^r \mid y \in L\}$. Because this grammar is of the form as specified in **b**., its language L^r is regular (because **b.** implies **a.**). Since regular language are closed under reversal, the original language L must be regular, too.

4.26 Draw NFAs accepting the languages generated by the given grammars. **a.** $S \rightarrow aA \mid bC$, $A \rightarrow aS \mid bB$, $B \rightarrow aC \mid bA$, $C \rightarrow aB \mid bS \mid \Lambda$ This is a regular grammar. Using the construction given in the proof of Theorem 4.14, we obtain the following NFA accepting L(G).

Now it is not difficult to see that

 $L(G) = \{x \in \{a, b\}^* \mid n_a(x) \text{ is even and } n_b(x) \text{ is odd } \}.$ S corresponds to "even number of a's and even number of b's" A corresponds to "odd number of a's and even number of b's" B corresponds to "odd number of a's and odd number of b's" C corresponds to "even number of a's and odd number of b's". **b.** $S \to bS \mid aA \mid \Lambda, \quad A \to aA \mid bB \mid b, \quad B \to bS$ In principle, we again use the construction given in the proof of Theorem 4.14, to obtain an NFA accepting L(G). Only the production $A \to b$ does not satisfy the definition of a regular grammar. For that production, we introduce a special accepting state F, reachable from state A with a

transition labelled by b, and without outgoing transitions. The result is:

From this automaton we can read the regular expression $(b^*aa^*bb)^*b^*(\Lambda + aa^*b)$ which describes L(G).

4.27 See the FA M in Figure 4.33. The regular grammar G with L(G) = L(M) constructed from M as in Theorem 4.14 has the productions: $A \to aB | bD | \Lambda, \quad B \to aB | bC, \quad C \to aB | bC | \Lambda, \quad D \to aD | bD.$ This grammar has A as its starting symbol. Note that the state D is a 'sink' state and that, consequently, the productions relating to D can be safely omitted from the grammar without affecting the successful derivations (and hence the generated language). This yields: $A \to aB | \Lambda, \quad B \to aB | bC, \quad C \to aB | bC | \Lambda.$

4.28 Given is the CFG with productions:

 $S \rightarrow abA \mid bB \mid aba, \quad A \rightarrow b \mid aB \mid bA, \quad B \rightarrow aB \mid aA.$

This grammar is not a regular grammar but we transform it into an equivalent regular CFG G:

 $S \to aX \, | \, bB \, | \, aY, \quad X \to bA, \quad Y \to bZ, \quad Z \to aF,$

 $A \to bF \, | \, aB \, | \, bA, \quad B \to aB \, | \, aA, \quad F \to \Lambda.$

Next we apply the method from the proof of Theorem 4.14 and obtain an NFA accepting L(G):

4.29 Each of the given grammars, though not regular, generates a regular language. Find for each a regular grammar (a CFG with only productions of the form $X \to aY$ and $X \to \Lambda$) generating its language. **a.** $S \to SSS | a | ab$

The only non-terminating production for S is $S \to SSS$, which means that the number of occurrences of S in the current string increases with 2 each time this production is used. Terminating productions can be postponed until no production $S \to SSS$ will be applied anymore. Since we begin with one S, this means that just before termination we will have an odd number of S's. Termination of S yields for every occurrence of S either a or ab. Hence L(G) consists of an odd number of concatenated a or ab strings: $L(G) = (\{a, ab\}\{a, ab\})^*\{a, ab\}$ which is indeed a regular language. A regular grammar for this language would be (with starting symbol Z): $Z \to aU \mid aV \mid aF \mid aB, \quad B \to bF, \quad V \to bU, \quad U \to aZ \mid aW, \quad W \to bZ, F \to \Lambda$ **b.** $S \to AabB, \quad A \to aA \mid bA \mid \Lambda, \quad B \to Bab \mid Bb \mid ab \mid b$

It is easy to see that from A the language $\{a, b\}^*$ is generated.

From B we obtain the language $\{ab, b\}\{ab, b\}^* = \{ab, b\}^*\{ab, b\}$.

Consequently $L(G) = \{a, b\}^* \{ab\} \{ab, b\}^* \{ab, b\}$, a regular language. A regular grammar for this language would be (with starting symbol Z): $Z \to aZ \mid bZ \mid aB, \quad B \to bY, \quad Y \to aX \mid bF \mid bY, \quad X \to bF \mid bY, \quad F \to \Lambda$ c. $S \to AAS \mid ab \mid aab, \quad A \to ab \mid ba \mid \Lambda$

As long as no terminating productions have been used every string derived from S consists of an even number of A's followed by an S. Upon termination the S will be rewritten into ab or aab, while each A yields ab or ba or Λ . An even number of concatenated A's yields a string consisting of an arbitrary number of concatenated occurrences of ab and ba. Note that this number is not necessarily even, since any A may also be rewritten into Λ .

Consequently, $L(G) = \{ab, ba\}^* \{ab, aab\}$, a regular language.

A regular grammar for this language would be (with starting symbol Z): $Z \to aY \mid bX, \quad X \to aZ, \quad Y \to bZ \mid bF \mid aW, \quad W \to bF, \quad F \to \Lambda$

d. $S \to AB$, $A \to aAa \mid bAb \mid a \mid b$, $B \to aB \mid bB \mid \Lambda$

From A we generate the language consisting of all odd-length palindromes over $\{a, b\}$, which is not a regular language! However B generates $\{a, b\}^*$. Thus L(G) consists of words formed by an odd-length palindrome followed by an arbitrary word over $\{a, b\}$. Now note that *every* non-empty word over $\{a, b\}$ can be seen as an a or b (both odd-length palindromes) followed by an arbitrary word over $\{a, b\}$. Consequently, $L(G) = \{a, b\}^+$, a regular language after all!

A regular grammar for this (easy) language would be (with starting symbol Z): $Z \rightarrow aZ \mid bZ \mid aF \mid bF$, $F \rightarrow \Lambda$

e. $S \rightarrow AA \mid B$, $A \rightarrow AAA \mid Ab \mid bA \mid a$, $B \rightarrow bB \mid b$

Clearly, every occurrence of B generates $\{b\}^+$. Because of $S \to B$, this implies that $\{b\}^+ \subseteq L(G)$.

The other production for S is $S \to AA$. Each A can surround itself with

any number of b's before either terminating as a or producing two more A's. Eventually, each A from $S \to AA$, yields an odd number of a's, together with an arbitrary number of b's at arbitrary positions. Hence after $S \Rightarrow AA$ we can produce any word over $\{a, b\}$ with an even (non-zero) number of a's. Together with $\{b\}^+ \subseteq L(G)$, this implies that $L(G) = (\{b\}^*\{a\}\{b\}^*)^+ \cup \{b\}^+$, i.e., all non-empty strings with an even number of a's.

A regular grammar for this language would be (with starting symbol Z): $Z \to aY | bZ | bF, \quad Y \to bY | aZ | aF, \quad F \to \Lambda$

4.34 Consider the CFG with productions: $S \rightarrow a | Sa | bSS | SSb | SbS$. This grammar is ambiguous, the word *abaa* has two different leftmost derivations: $S \Rightarrow SbS \Rightarrow abS \Rightarrow abSa \Rightarrow abaa$ and $S \Rightarrow Sa \Rightarrow SbSa \Rightarrow abSa \Rightarrow abaa$.

4.35 Consider the context-free grammar with productions

 $S \to AB, \quad A \to aA \mid \Lambda, \quad B \to ab \mid bB \mid \Lambda$

This grammar is NOT unambiguous, even though every derivation of a string from S has to begin with $S \to AB$, and any string derivable from A has only one derivation from A and likewise for B.

There are strings in L(G) which have more than one derivation tree (more than one leftmost derivation). Examples are *ab* and *aab*:

 $S \Rightarrow AB \Rightarrow B \Rightarrow ab$ and $S \Rightarrow AB \Rightarrow aAB \Rightarrow aB \Rightarrow abB \Rightarrow ab;$

 $S \Rightarrow AB \Rightarrow aAB \Rightarrow aB \Rightarrow aab \text{ and } S \Rightarrow AB \Rightarrow aAB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aabB \Rightarrow aab.$

4.36 We look at the grammars given in Exercise 4.1. For each of them we have to decide if the grammar is ambiguous or not. We discuss here b, c, d, e, f and g. Grammars a and h are both not ambiguous, as it can be proved in a similar manner as for grammar g.

b The grammar given in **b** is ambiguous. This follows from the two different leftmost derivations for aaa:

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow^3 aaa$$

and

$$S \Rightarrow SS \Rightarrow aS \Rightarrow aSS \Rightarrow^2 aaa$$
.

 \mathbf{c} and \mathbf{d} The grammar given \mathbf{c} and \mathbf{d} are ambiguous. This follows from the two different leftmost derivations for the word *babab*:

$$S \Rightarrow SaS \Rightarrow SaSaS \Rightarrow^3 babab$$

$$S \Rightarrow SaS \Rightarrow baS \Rightarrow baSaS \Rightarrow^2 babab$$

e This grammar is ambiguous. We have the following two leftmost derivations for abab:

$$S \Rightarrow TT \Rightarrow aTT \Rightarrow aTaT \Rightarrow abaT \Rightarrow abab$$

and

and

$$S \Rightarrow TT \Rightarrow TaT \Rightarrow aTaT \Rightarrow^2 abab$$
.

f First of all note that since all productions have at most one non-terminal at the right hand side, every derivation is a leftmost one.

Next we prove by induction on the length of $x \in \Sigma^*$ that if $S \Rightarrow^* x$ then this is the only derivation of x from S, and that if $A \Rightarrow^* x$ then this is the only derivation of x from A.

(Induction base) n = 0 then $x = \Lambda$. Λ is not derivable from S because every production of S introduce a terminal. But $A \Rightarrow^* \Lambda$, because $A \Rightarrow \Lambda$. Clearly this is the only derivation of Λ from A, because all other productions introduce terminals.

(Induction step) Assume the above statement holds for all strings of length strictly smaller than $x \in \Sigma^*$ such that $S \Rightarrow^* x$ or $A \Rightarrow^* x$.

Assume $S \Rightarrow^* x$. If x = aya then the first step in the derivation of x from S must be $S \Rightarrow aSa$. Thus $S \Rightarrow^* y$. But y is strictly smaller than x, and, by induction hypothesis, the derivation $S \Rightarrow^* y$ is unique. Thus also that of x from S is unique. The case when x = byb is similar. If x = ayb then the first step in the derivation of x from S must be $S \Rightarrow aAb$. Thus $A \Rightarrow^* y$, and by induction hypothesis it follows that the latter derivation is unique. And thus so also that of x from S is unique. The case when x = bya is similar.

If $A \Rightarrow^* x$ we have four cases. The case x = aya and byb can be treated as above. If x = a or x = b then $A \Rightarrow x$ is immediately the unique derivation for x from A. The case $x = \Lambda$ is not necessary because is treated in the base of the induction.

g The proof is similar to f. First we note that since all productions have at most one non-terminal at the right hand side every derivations is a leftmost one. Next we prove by induction on the length of $x \in \Sigma^*$ that if $S \Rightarrow^* x$ then this is the only derivation of x from S, and that if $T \Rightarrow^* x$ then this is the only derivation of x from T.

(Induction base) n = 0 then $x = \Lambda$. We have that $S \Rightarrow^* \Lambda$, because

8

 $S \Rightarrow \Lambda$. This is the only derivation of Λ from S, because all other productions introduce terminals. Further, Λ is not derivable from T, because every production of T introduce a terminal.

(Induction step) Assume the above statement holds for all strings of length strictly smaller than $x \in \Sigma^*$, with $S \Rightarrow^* x$ or $T \Rightarrow^* x$.

Assume $S \Rightarrow^* x$. If x = ay then the first step in the derivation of x from S must be $S \Rightarrow aT$. Thus $T \Rightarrow^* y$. But y is strictly smaller than x, and, by induction hypothesis, the derivation $T \Rightarrow^* y$ is unique. Thus also that of x from S is unique. The case when x = by is similar.

Assume $T \Rightarrow^* x$ If x = ay then the first step in the derivation of x from T must be $T \Rightarrow aS$. Thus $S \Rightarrow^* y$. But y is strictly smaller than x, and, by induction hypothesis, the derivation $S \Rightarrow^* y$ is unique. Thus also that of x from T is unique. The case when x = by is similar.

4.38

We have to show that a given grammar is ambiguous and we have to give a non-ambiguous grammar generating the same language.

a. $S \rightarrow SS \mid a \mid b$

According to this grammar the string aba has two different leftmost derivations: $S \Rightarrow SS \Rightarrow aS \Rightarrow aSS \Rightarrow abS \Rightarrow aba$ and

 $S \Rightarrow SS \Rightarrow SSS \Rightarrow aSS \Rightarrow abS \Rightarrow aba.$

The two derivation trees are as follows:

With the exception of the empty string Λ , all strings over $\{a, b\}$ can be generated, that is the regular language $\{a, b\}^+$.

An equivalent regular grammar is then : $S \to aX | bX \quad X \to aX | bX | \Lambda$. This grammar is not ambiguous because it is a regular grammar stemming from a deterministic finite automaton.

b. $S \rightarrow ABA$ $A \rightarrow aA \mid \Lambda$ $B \rightarrow \mid bB \mid \Lambda$

According to this grammar , the word *a* has two different leftmost derivations : $S \Rightarrow ABA \Rightarrow aABA \Rightarrow^3 a$ and

 $S \Rightarrow ABA \Rightarrow BA \Rightarrow A \Rightarrow aA \Rightarrow a.$

The corresponding derivation trees look like this:

The grammar generates words of 0 or more a's followed by 0 or more b's followed by 0 or more a's, i.e., the language denoted by the regular expression a * b * a*. An equivalent regular grammar is:

 $S \to aS \mid bX \mid \Lambda \quad X \to bX \mid aY \mid \Lambda \quad Y \to aY \mid \Lambda$.

This grammar is not ambiguous, because its underlying finite automaton is clearly deterministic. For example, the word a has the unique derivation $S \Rightarrow aS \Rightarrow \Lambda$.

c.
$$S \rightarrow aSb \mid aaSb \mid \Lambda$$
.

According to this grammar , the word aaab has two different leftmost derivations : $S\Rightarrow aSb\Rightarrow aaaSb\Rightarrow aaab$ and

 $S \Rightarrow aaSb \Rightarrow aaaSb \Rightarrow aaab$.

The grammar generates the words consisting of a number of a's followed by a number of b's where the number of a's is at least as large as the number of b's but no more than twice as large, i.e, the language $\{a^i b^j \mid j \leq i \leq 2j\}$. The ambiguity of the given grammar is caused by the extra a's that can be added at any time. The following grammar generates the same language, but first generates one a for each b, and once two a's for a b are generated, the grammar continues to do so until the derivation stops. Thus, we have an additional non-terminal in order to be able to separate two processes:

 $S \to aSb \mid \Lambda \mid aaAb \quad A \to aaAb \mid \Lambda$.

This grammar in not ambiguous, because the only derivation of each string of the form $a^{j+k}b^j$, where $0 \le k \le j$, is

 $\begin{array}{l} S \Rightarrow^{j} a^{j} S b^{j} \Rightarrow a^{j} b^{j} \text{ if } k = 0 \text{ and} \\ S \Rightarrow^{j-k} a^{j-k} S b^{j-k} \Rightarrow a^{j-k} a a A b b^{j-k} \Rightarrow^{k-1} a^{j-k+2} a^{2(k-1)} A b^{k-1} b^{j-k+1} \Rightarrow a^{j+k} b^{j} \text{ if } k \ge 1. \end{array}$

4.39 Let G be a regular grammar (note that $\Lambda \notin L(G)$). Convert G into an NFA M_G as in the proof of Theorem 4.14. Make M_G deterministic (using the subset construction) and transform the resulting FA M in an equivalent unambiguous regular grammar.

• Let G be a context-free grammar with start variable S and the following

productions:

$$S \rightarrow aSbS \mid bSaS \mid A$$

This grammar generates $AEqB = \{x \in \{a,b\}^* \mid n_a(x) = n_b(x)\}$ and is ambiguous.

c. Give an unambiguous context-free grammar for AEqB.

An element x of AEqB is either Λ , or starts with a or starts with b. If x starts with a, then there must be a corresponding b, i.e., an occurrence of b that causes the number of a's and the number of b's in the current prefix of x to be equal, for the first time (after the starting a). Let us write x = aybz, where y is the substring between the starting a and its corresponding b. This substring y is an element of AEqB and has the additional property that each prefix of y has at least as many a's as b's. Such substrings y can be generated by the following context-free grammar:

$$S_a \to a S_a b S_a \mid \Lambda$$

Analogously, strings y in AEqB with the additional property that each prefix of y has at least as many b's as a's can be generated by the following context-free grammar:

$$S_b \to b S_b a S_b \mid \Lambda$$

To generate AEqB, we add the following productions:

$$S \to aS_a bS \mid bS_b aS \mid \Lambda$$

4.48 Let $G = (V, \Sigma, S, P)$ be a CFG. According to Definition 4.26, a variable is nullable if and only if it has a production with righthand-side Λ or a production with righthand-side consisting of nullable variables only.

We have to prove that for all $A \in V$ it holds that A is nullable if and only if $A \Rightarrow^* \Lambda$ in G.

Let $A \in V$. First assume that A is nullable. We use (structural) induction. If A is nullable because of the production $A \to \Lambda$, then we have immediately that $A \Rightarrow \Lambda$. Otherwise there is a production $A \to B_1B_2...B_n$ with $n \ge 1$ and all B_i 's nullable variables. Assume that for $1 \le i \le n$, we indeed have $B_i \Rightarrow^* \Lambda$ (induction hypothesis). Then by the induction hypothesis, $A \Rightarrow B_1B_2...B_n \Rightarrow^* B_2...B_n \Rightarrow^* \Lambda$ as desired.

Next assume that $A \Rightarrow^m \Lambda$ in G for some $m \ge 1$ (the case m = 0 does not occur). We prove by induction on m that A is nullable. If m = 1, then $A \Rightarrow \Lambda$. This implies that $A \to \Lambda$ is a production of G and so A is nullable. Let $k \ge 1$ and assume that whenever $B \Rightarrow^m \Lambda$ for some $m \le k$, then B is

nullable (induction hypothesis). Then consider the case $A \Rightarrow^{k+1} \Lambda$. This implies that the first production used in this derivation has been of the form $A \to B_1 \dots B_n$ for some $n \ge 1$. Thus $A \Rightarrow B_1 \dots B_n \Rightarrow^k \Lambda$. Consequently, for each $1 \le i \le n$, we have $B_i \Rightarrow^{k_i} \Lambda$ where $1 \le k_i \le k$. By the induction hypothesis each B_i is nullable and so also A is nullable.

4.49 Find a CFG without Λ -productions that generates the same language (except for Λ) as the given CFG. We apply the algorithm from Theorem 4.27. **a.** CFG G is given as $S \to AB \mid \Lambda$, $A \to aASb \mid a$, $B \rightarrow bS.$ Starting from $N_0 = \emptyset$, we find that the nullable variables are $N_1 = \{S\} = N_2$. Modify the productions: $S \to AB \mid \Lambda$, $A \to aASb \mid aAb \mid a$, $B \to bS \mid b$. Finally, remove the Λ productions to obtain G' with $S \rightarrow AB$. $A \to aASb \mid aAb \mid a, \quad B \to bS \mid b.$ Note that S is nullable. Thus (see Exercise 4.48) $S \Rightarrow^* \Lambda$ which implies that $\Lambda \in L(G)$. Hence, in this case $L(G) - L(G') = \{\Lambda\}$. **b.** CFG G is given as $S \to AB \mid ABC, \quad A \to BA \mid BC \mid \Lambda \mid a,$ $B \to AC \mid CB \mid \Lambda \mid b, \quad C \to BC \mid AB \mid A \mid c.$ The nullable variables are obtained as $N_3 = N_2 = \{S, A, B, C\}$ from $N_0 = \emptyset, N_1 = \{A, B\}, N_2 = N_1 \cup \{S, C\}.$ Modify the productions (duplicates not included): $S \to AB \mid A \mid B \mid \Lambda \mid ABC \mid BC \mid AC \mid C, \quad A \to BA \mid B \mid A \mid BC \mid C \mid \Lambda \mid a,$ $B \to AC \mid A \mid C \mid CB \mid B \mid \Lambda \mid b, \quad C \to BC \mid B \mid C \mid \Lambda \mid AB \mid A \mid c.$ Finally, remove the Λ productions and $X \to X$ productions to obtain G' $S \to AB \mid A \mid B \mid ABC \mid BC \mid AC \mid C, \quad A \to BA \mid B \mid BC \mid C \mid a,$ $B \rightarrow AC \mid A \mid C \mid CB \mid b, \quad C \rightarrow BC \mid B \mid AB \mid A \mid c.$ Note that S is nullable and so $\Lambda \in L(G)$. Hence, also in this case L(G) – $L(G') = \{\Lambda\}.$

4.50 For each grammar G given, find a CFG G' without Λ -productions and without unit productions such that $L(G') = L(G) - \{\Lambda\}$. We apply Theorem 4.27 (Note that eliminating Λ -productions may introduce new unit productions, whereas eliminating unit productions does not introduce Λ -productions.)

a. *G* has productions $S \to ABA$, $A \to aA \mid \Lambda$, $B \to bB \mid \Lambda$. Elimination of nullable productions: all variables of *G* are nullable, because $N_3 = N_2 = N_1 \cup \{S\}$ with $N_1 = \{A, B\}$. Modifying the productions leads to $S \to ABA \mid BA \mid AA \mid AB \mid B \mid A \mid \Lambda$, $A \to aA \mid a \mid \Lambda$, $B \to bB \mid b \mid \Lambda$.

Then we delete the Λ -productions and we obtain:

 $S \to ABA \,|\, BA \,|\, AA \,|\, AB \,|\, B \,|\, A, \quad A \to aA \,|\, a, \quad B \to bB \,|\, b.$

Elimination of unit productions: Both A and B are S-derivable; since neither A nor B have unit productions, there are no variables that are A-derivable or B-derivable.

A is S-derivable, so we add $S \to aA$ and $S \to a$; B is S-derivable, so we add $S \to bB$ and $S \to b$. Then we delete all unit productions. Consequently we arrive at the CFG G' defined by $S \to ABA | BA | AA | AB | bB | b | aA | a, A \to aA | a, B \to bB | b.$

4.51, 4.52, 4.53 These exercises are all concerned with reducing CFGs in the sense that superfluous symbols (those that can never be used in a successful derivation) are removed. Let $G = (V, \Sigma, S, P)$ be a CFG.

4.51 Live variables:

A is live (in G) iff there exists an $x \in \Sigma^*$ such that $A \Rightarrow^* x$. Recursive definition/algorithm: $N_0 = \emptyset$, $N_{i+1} = N_i \cup \{A \in V \mid \exists x \in (N_i \cup \Sigma)^* \text{ with } A \to x \in P\}$ for all $i \ge 0$. In particular, $N_1 = \{A \in V \mid \exists x \in \Sigma^* \text{ with } A \to x \in P\}$. The algorithm terminates if $N_{k+1} = N_k$ for some $k \ge 0$.

4.52 Reachable variables:

A is reachable (in G) iff there exists $\alpha, \beta \in (V \cup \Sigma)^*$ such that $S \Rightarrow^* \alpha A\beta$. Recursive definition/algorithm:

 $N_0 = \{S\}$ and, for all $i \ge 0$, $N_{i+1} = N_i \cup \{A \in V \mid \exists B \in N_i \text{ for which } \exists \alpha_1, \alpha_2 \in (V \cup \Sigma)^* \text{ with } B \rightarrow \alpha_1 A \alpha_2 \in P\}.$ The algorithm terminates if $N_{k+1} = N_k$ for some $k \ge 0$.

4.53 Useful variables:

A is useful (in G) iff there exists $\alpha, \beta \in (V \cup \Sigma)^*$ and $x \in \Sigma^*$ such that $S \Rightarrow^* \alpha A \beta \Rightarrow^* x$. Thus if A is useful, it is reachable and live.

c.i. Note that only useful variables appear in successful derivations (and vice versa: each useful variable appears in some successful derivation). As discussed in **a**. we can find for each CFG an equivalent CFG in which all variables are useful by first eliminating all dead variables and then all non-reachable ones. As an example consider the grammar G given by the productions

 $S \rightarrow ABC \mid BaB, \quad A \rightarrow aA \mid BaC \mid aaa, \quad B \rightarrow bBb \mid a, \quad C \rightarrow CA \mid AC.$

First determine the live variables: $N_0 = \emptyset$, $N_1 = \{A, B\}$, $N_2 = N_1 \cup \{S\}$, $N_3 = N_2$.

Eliminate the remaining ("dead") variables (in this case C) from G: $S \rightarrow BaB$, $A \rightarrow aA \mid aaa$, $B \rightarrow bBb \mid a$.

Next determine (in the new grammar) the reachable variables: $N_0 = \{S\}$, $N_1 = N_0 \cup \{B\}$, $N_2 = N_1$.

Eliminate the remaining, unreachable, variables (in this case A) from G: $S \rightarrow BaB$, $B \rightarrow bBb \mid a$.

This grammar generates L(G) and is "reduced" (all its variables are useful). Finally, note that eliminating dead variables may make others unreachable: For the example just worked out, eliminating $S \rightarrow ABC$ (because C is dead) makes A unreachable. On the other hand, eliminating non-reachable variables does not affect the liveness of the (reachable) others.

4.54 Construct for each grammar G given, a grammar G' in CNF with $L(G') = L(G) - \{\Lambda\}.$

a. G with productions $S \to SS \mid (S) \mid \Lambda$.

1. Eliminate the Λ -production from G which yields G_1 with productions $S \to SS | (S) | ()$. The newly introduced production $S \to S$ is removed together with the Λ -production. $L(G_1) = L(G) - \{\Lambda\}$.

2. There are no unit productions (left).

3. Finally, adapt to CNF; first we get $S \to SS | LSR | LR$, $L \to (, R \to)$; next we have $S \to SS | LX | LR$, $X \to SR$, $L \to (, R \to)$, which are the productions of G' and $L(G') = L(G_1) = L(G) - \{\Lambda\}$.

• Let $G = (V, \Sigma, S, P)$ be a CFG in Chomsky normal form and $x \in L(G)$ with |x| = k for some $k \ge 1$. We compute the number of derivation steps needed to generate x.

As in the beginning of Section 4.5, we consider, for words $w \in (V \cup \Sigma)^*$, their length |w| and the number of occurrences of terminals which appear in them: t(w). Let N(w) = |w| + t(w). Thus N(S) = 1 and N(x) =|x| + t(x) = k + k = 2k for our given x. Since G is in CNF its productions are of the form $A \to BC$ or $A \to a$. Consequently, applying a production in a single derivation step $u \Rightarrow v$ either increases the length by 1 or increases the number of terminal occurrences by 1. In other words: N(v) = N(u) + 1. Since N(x) - N(S) = 2k - 1, it follows that a (each!) derivation of x from S in G consists of 2k - 1 derivation steps.

Version of 11 November 2024. Feel free to mention any errors in these solutions at rvvliet@liacs.nl