Fundamentele Informatica 3
Antwoorden op geselecteerde opgaven uit

Hoofdstuk 7

John Martin: Introduction to Languages and the Theory of Computation
(fourth edition)

Jetty Kleijn, Rudy van Vliet

Voorjaar 2012

N.B.: in these solutions, we use the old notation for configurations of a
Turing machine, i.e., the notation from the third edition of the book of
Martin: (g, zy) instead of xqy.

7.1 See Figure 7.6 (erroneously called Figure 7.5): a TM accepting {ss | s €
{a,b}*}. We give the configuration sequence of the computation for input
aaba:

(qo, Aaaba) F (g1, Aaaba) F (g2, AAaba) - (g2, AAaba)

(g2, AAaba) - (g2, AAabaA) F (g3, AAaba) - (g4, AAabA) F

(qa, AAabA) & (gs, AAabA) = (q1, AAabA) & (g2, AAABA) +

(g2, AAADA) - (g3, AAADA) & (q4, AAABA) & (q1, AAABA) +

— aaba is of even length —

(g5, AAABA) & (g5, AAaBA) - (g5, AaaBA) F (g6, AaaBA) -

(gs, AAaBA) t- (g3, AAaBA) - CRASH

or, in other words, F (h,, AAaBA).

aaba is not of the form ss and not accepted by the Turing machine.

7.2

We first trace the operation of the TM on the example input x = ab:
(90, Aab) F (g1, Aab) & (g1, Aab) & (g1, AabA)

(g2, Aab) b (g5, AaAA) F (gs, AaAbA) b (g7, AaAbb)

(g7, AaAbb) F (g2, AaAbD) = (g3, AAADD) = (qa, AAabb) +

(q4, AAabb) = (gs, AAabbA) - (g7, AAabba) + (g7, AAabba) -

(g7, AAabba) - (g7, AAabba) F (g2, AAabba) & (hg, AAabba)

We now consider arbitrary input z. After going to cell 1 and entering state
¢1 the Turing machine moves to the right of (what still remains of) the input
string (state g2); it remembers and erases the last symbol (g3 for a; g5 for
b) and moves it one cell to the right after which it proceeds (in g4, resp. ¢s)
to the first empty cell to the right where it writes a, resp. b. Then it moves
back to the left (in ¢7) until it encounters an empty cell to the left of which
the last symbol of the rest of the input is waiting. The process repeats from
g2 until no input is left, after which the Turing machine goes from ¢o to the
accepting state hg.

We conclude that (qo, Az) F* (he, AAxz™) for all x € {a,b}*: the machine
adds the mirror image to a word (and the input is shifted one cell to the
right).

7.9 The TM in Figure 7.37 when given an input string 1° repeatedly divides
7 by 2 until exactly one 1 remains after which it accepts. Hence the input is
accepted if and only if 7 is a power of 2. Thus the TM accepts the language
{12" | n >0} = {1,11,1111, 11111111, 116 .. .},

7.12 Let T be a TM accepting a language L. We modify T in such a way
that the resulting TM T" also accepts L and never stops unsuccessfully (the
reject state h, is not needed, neither explicitly nor implicitly).

Recall that T stops unsuccessfully if and only if either it scans a symbol in
a state for which combination it does not have an instruction or the head
falls off the left side of the tape.

First we consider the problem of the head falling off the tape. We use
symbols with a subscript L as an indication of their occurrence in the left-
most cell. We thus have a new symbol Ay and new tape symbols aj, for
every a € I where I' is the tape alphabet of T. We let T begin its work
on any input x by first changing the A in the leftmost cell into Ay. Thus
from here (configuration (qo, Ay x)) it behaves as T unless it sees a subscript
L. For these cases, instructions ¢'(p, ar) = (g, by, D) are provided whenever
d(p,a) = (¢,b,D) and D is either R or S (the head moves to the right or
stays); for instructions 0(p,a) = (q,b, L) (when the head would move to the
left and fall off), we do nothing. Note that 7" (constructed sofar would crash
by lack of instructions rather than falling off the tape. The set of accepted
words has not been changed.

Finally, we add a new state sink together with instructions ¢’(sink, a) =
(sink,a,S) for all symbols a € 'UT' U{A}. Thus once the TM is in sink
it will remain (loop) there forever scanning the same cell with the same
symbol. For every combination (p,a) of a state p and a symbol a for which

there is no instruction (thus in particular for p = h, which is now considered
an ordinary state), we set ¢'(p,a) = (sink,a, S). Hence whenever T would
crash because of lack of an instruction (or fall off the tape), the modification
now takes care that it moves to sink (and only then). Note that adding
these instructions does not make the TM non-deterministic nor affects the
set of words accepted.

Alternative solution: instead of considering h, as an ordinary state, we
could replace every transition of the form d(p,a) = (h,,b, D) by d(p,a) =
(sink, b, D).

7.13 As mentioned in Example 7.21, during (or after) a computation of a
TM there is no (general, effective) procedure to determine the position of
the rightmost cell containing a non-blank symbol. Simply walking to the
right does not give insight in whether the last non-blank has been seen or
whether there might still be another one. As we discuss now also more sub-
tle methods will not work.

Assume we have a module TM T which when started on a tape will move
the head to the rightmost position on the tape containg a non-blank (if the
tape is completely blank it moves the head to cell 0) and then stop.

First consider a TM T} which halts (for some input) in the accepting con-
figuration (hq,Al). Then Ty begins its work and after some finite time it
halts with its head on the 1 in cell 1 with the tape otherwise empty. We now
make a TM T5 which works as follows. It erases its input, moves back to the
beginning of the tape and writes 1 in cell 1, then it invokes Ty but with the
following modification: it marks cell 2 with the endmarker # and whenever
is read it is treated as A and the marker is shifted one cell to the right.
In this way there will always be exactly one # on the tape directly after the
rightmost cell ever visited by Tp. Once (the thus) modified version of T has
finished its work we stop in the configuration (hg, A1A"#) with cell n + 1
the rightmost cell ever visited by Tp.

Now we ask Ty to find the rightmost non-blank cell left by 75. Since it is
deterministic it will proceed as for T} beginning from (hg, Al) and will never
visit the cell with #. Thus Ty does not work correctly for T5.

7.14 We construct a (module) Turing machine Insert(c) with input alpha-
bet ¥ which places the symbol o € ¥ U {A} at the current position of the
tape head and shifts the tape contents which follow one position to the right.
More precisely: (p,yz) F* (¢,ycz) where p is the initial state of Insert(o)
and ¢ its terminating state (h, if you like); z does not contain A’s.

The TM achieves this by writing a A at the current position if that is not
blank (if it is, we know that z = A and the TM can write o rightaway and
stop); the TM moves to the right, all the time replacing the next symbol by
the previous one. When it sees A it writes the final symbol, moves back to
the left until it sees the blank cell left at the original beginning of z where
it writes o and stops.

Below follows a detailed transition diagram for the case that the input al-
phabet of the Turing machine consists of a, b only (and so o € {a,b} U{A}).
Generalizing this to arbitrary alphabets should be easy.

ala, L
o AJa, L b//b,L

7.7

¢ We construct a TM that computes the square of any given positive integer
(in unary), thus we aim at (go, A1™) F* (ha,élnz).

Basically given an input string of n 1’s we have to produce another n — 1
strings of n 1’s. Therefore we will use the modules Copy and Delete, the
latter to remove the redundant A’s inbetween the copied strings.

In order to distinguish the first A in cell 0 from other occurrences of A we
change it till the end of the computation in $. This implies that we use
a slightly extended version of the module Copy as described in Example
7.18 (Figure 7.19). The modified version used here treats $ as a A, that is
(p, Az) H* (¢, AxAz) and also (p, $z) H* (¢, $zAx) with p the initial state of
Copy and q its final state. Also this modified version of Copy does not visit

any other cells than those used in the final configuration. (Give a transition
diagram for this Copy.)

The module Delete is given in Example 7.20 (Figure 7.22, with some errors);
(p,yaz) F* (¢,yz) where z doesn’t contain blanks and is followed by a blank,
a may be a blank, and p and ¢ are the initial and final state. This Turing
machine only visits the cells occupied by azA, the last part of its input.
Our TM works as follows:

If the TM is given 0 as input, it can stop immediately (after changing $ back
into A), because 02 = 0.

If the input is not empty, the first 1 is marked (as a) and the TM looks for
a second 1. If there is none it changes the a back into 1 and the $ into A
and it stops, because 12 = 1.

If the TM discovers a second 1, then it proceeds as follows:

the 1 is marked (again as a), the head moves back to $§ and Copy copies the
current string. The head moves to the right to the beginning of the fresh
copy and looks for an unmarked 1. If there is one, it is marked, the head
moves back to the beginning of this block and it is copied. This procedure
is repeated until there is no 1 left in the last copied block, after which the
head moves to the left, on the way deleting the A’s and changing the a’s
into 1’s until $ is reached. This is changed into A and the machine stops.
The transition diagram is given below.

ala,L

A/$ R 1/a, R 1/a, L

d Modify (and take care of a proper final configuration) the TM in Figure
7.37 (see Exercise 7.9).

7.18 Note that in Figure 7.38, the big arrow labelled A/A R has two

arrowheads; it should however point only to the left.
f(z) = b@gna(®) ie. f(x) has the same symbols as z, but with all the
b’s at the beginning.

7.19 We have two Turing machines 77 and 15, computing the functions f;
and fa, respectively. Our composite Turing machine first computes fi(x)
and fo(z) using 77 and T; given some input z. After that, it adds the results:
Copy the input = and insert a marker $: (qo, Ax) H* (qo1, Az$Ax);
Compute f1 using T1: (qo1, Ax3Ax) H* (hy, AxSAfi(x));

Interchange = and fi(x): (h, Az$SAfi(x)) F* (qo2, Af1(z)$Ax);

Compute fo using To: (qoz2, Af1(2)$Ax) H* (he, Afi(x)$Af2(2));

Delete the marker, and go to the beginning of the tape:

(ha, Ay (@A fo(@)) F* (a1, A (2) A fo(@)):

Add fi(z) and fa(2): (g1, Af1(2)Af2(2)) F (ha, Afi(2) + fa(z)).

Thus, apart from 77 and T we need TM modules to copy (see Example
7.18), to insert (Exercise 7.14), to swap two strings (design your own TM
module for this task), to delete (Example 7.20) and to add two natural
numbers. Note that if the two numbers are in unary representation, then
they can be added by simply deleting the blank symbol separating them.

7.21 Let us assume that we are given two Turing machines 72 and T2plusl:
T2 computes the function fp(1¥) = 12* for all & > 0 (in other words:
fa(k) = 2k), and

T2plusl computes the function foy1(1%) = 12**1 for all k¥ > 0 (in other
words: fay1(k) = 2k 4+ 1). We can now construct a TM which when given
an arbitrary binary string (which may start with leading 0’s) computes in
unary the number it represents:

Going from left to right through the input string we compute after the blank
following the input (starting from 0 = A) in unary 2 times the current value
for each 0 and 2 times the current value +1 for each 1 we encounter. Once
the whole input has been processed (and marked) in this way, we delete the
A between marked input and result and then moving to the left we delete
all 2’s and stop with the head on the blank in cell 0.

See the transition diagram.

A/A,R 12
Delete A/a L (1)?(1):%
Delexte 1A//17AI;L T2plusl
A/AS z/z, R

Exercise: trace the computation of the above Turing machine in case the
input consists of only 0’s.

7.22 We assume that we already have a Turing machine T ; which when
given any natural number n in binary representation bin(n) (which is either
0 or starts with a 1) computes the binary representation of n + 1:

(qo, AO) F* (hg, Al) and (qo, Abin(n)) H* (he, Abin(n + 1)) for all n > 1.
A Turing machine that converts unary into binary could now work as fol-
lows:

Input 1%

if K =0 (empty tape), write 0 (in cell 1), move to cell 0 and stop;
otherwise (there is at least one 1), move to the end of the input string,
change the last 1 into a marker x, move two cells to the right, write a 1 and
go back to the right end of the remaining input;

repeat, until no input 1 remains, for each rightmost 1 in the remaining in-
put: replace 1 by x, move to the right until the first A, apply 71, go back
to the right end of the remaining input;

if all input has been thus dealt with, change the tape contents from Az*Abin(k)
into Abin(k) and stop with the head on cell 0.

Draw the transition diagram.

7.24 In Example 7.5, a TM has been given for the language L = {ss | s €
{a,b}*}. We now sketch a TM that accepts L, this time without using any
additional tape symbols (I' = X):

Given is an input word x € {a,b}*.

If x = A (the tape is empty) we can accept immediately. Thus from here
we assume that x = ¢;...¢, with ¢; € {a,b} and k& > 1.

First it is checked that x is of even length:

insert an extra blank in cell 1: (p, Ax) F* (¢, AAx);

move ¢ one cell to the left and ¢i one cell to the right; repeat this procedure
for cy...ck—1 until either it turns out that k£ is odd (no symbol found to
move to the right) in which case z is rejected; or we end with tape contents
Acl cee Ck/2AAC(k-/2)+1 e Ck

Next compare the two halves of x symbol by symbol more or less as before,
but rather than using uppercase letters as in Example 9.3 we replace symbols
that have been dealt with by A. Before each pass we have to check however
whether or not the symbols to be compared are the last symbols. This to
avoid that, in the next pass, the head falls off when we move to the left in
search for a nonblank symbol.

7.26 NB and PB are the TMs from Example 7.17, which move the tape
head to the next (or previous, respectively) blank on the tape.
G is the NTM described in Example 7.30 with (go, A) F* (hq, Aw) where w

can be any string over X.

Copy is the TM from Example 7.18 (Figure 7.19) with (g9, Az) F* (hq, AzAx)
for all words z € {0,1}*.

Fqual is the TM from Example 7.24 with, for all z,y € {0,1}*, (qo, AxAy) -*
(hq,vcw) for some v, c,w if and only if z = y.

Delete is the TM from Example 7.20 (Figure 7.22, with some errors) with
(qo,yaz) F* (hq,yz) where z doesn’t contain blanks and a may be a blank.
The NTM in the exercise, when given an input word u € {0, 1}*, first goes
to the right end of the input (using NB), then applies the NTM G starting
from the first blank right from the input. Thus (nondeterministically) the
tape contents are changed into AuAwA ... with w € {0,1}* an arbitrary
word; the head is on the A inbetween u and w.

Next w is copied (using Copy) and the A inbetween the copies is deleted
(using NB and Delete).

The head moves to cell 0 (using PB twice) and with Fqual it is tested
whether u = ww.

Consequently, the language accepted by this NTM is {ww | w € {0,1}*}.

7.27 Hints to construct an NTM for {1" | n = k? for some k > 0}:

Use the NTM G described in Example 7.30, the TM Square from exercise
7.17(c), and the TM Equal from Example 7.24.

As in Exercise 7.26, generate an arbitrary string from the language given,
compare it with the input and accept if and only if they are equal. Thus:
walk to the right end of the input word x € {1}*, generate with G an
arbitrary string w, apply Square which crashes when it encounters a 0. If
the NTM has not crashed, then w = 1¥ for some k > 0 and we now have on
the tape AzATF, Finally, z and 1% are compared.

7.28 Let L C ¥* be a language accepted by a Turing machine 7.

In Example 7.30, an NTM is described which accepts the set of all prefixes
of elements of L. This NTM begins by moving past the input z, calls the
NTM G which generates an arbitrary word w from ¥* and concatenates this
to z by deleting the A inbetween z and w. It then moves back to cell 0 and
calls T', which will lead to acceptance if and only if xw € L, thus if and only
if x is a prefix of a word from L.

a As in Example 7.30, but now the word w generated by G has to be moved
to the left of x: we need a module (go, AzAw) F* (hg, Awzx). Then call T
b First as in Example 7.30, concatenate x with an arbitrary w leading to
zw; then, as in a, concatenate an arbitrary v to the left of zw which yields
vezw. Then call T.

7.32 We are asked to describe a TM that enumerates the palindromes over
{0,1} in canonical order: x < y iff |z| < |y| or |z| = |y| and x comes
alphabetically before y.

We will use the fact that a palindrome v preceeds a palindrome w if and
only if the first half of v (including its middle symbol if it is of odd length)
preceeds the first half of w.

First we describe a module TM which when given a palindrome as input
produces the next (in the canonical order) palindrome as output:

(QO7 éwn) H* (hm AfL"rzéfL'7’L-|—1)~

— use the module Copy to copy the input: (qo, Ax,) F* (1, Az, Axy,)

— examine the copy:
if z,, contains no 0’s, then change the copy to 0/»I*1 which is a palindrome;
otherwise find the middle of the copy and change from there — going from
right to left through the string — all 1’s into 0’s, until a 0 is found which is
changed into 1; then modify the second half accordingly (palindrome).
Thus,
if x,, = y0y" for some string y, the copy of x,, has been changed into yly";
if z,, = y0170y" for some string y and j > 0, the copy of z,, has been changed
into y10/1y" (check that this is indeed z,41!);

— go back to the A just before the thus modified copy and stop.
Clearly we can now make a TM enumerating all palindromes in canonical
order by changing h, into qy. Hence when started on the empty palindrome,
the TM will never stop and only be busy creating on the tape a list of all
palindromes in canonical order.

Note that we could also have given a module TM which replaces the input x,,
itself, rather than a copy, by x,+1, which then would have led to a TM which
shows all palindromes one after the other (in time), rather than behind one
another.

versie 5 juni 2012

10

