
Fundamentele Informatica II
Answer to selected exercises 2

John C Martin: Introduction to Languages and the Theory of Computation

M.M. Bonsangue (and J. Kleijn)

Fall 2013

2.2
(a) All strings containing a substring starting with at least two a’s followed
by ba.
(b) All strings ending with at least two a’s followed by ba.
(c) All strings starting with aaba.
(d) Either the empty string or all string starting with a and ending with b.
(d) All strings with no two consecutive equal alphabet symbols (thus no aa
or bb).

2.3 b Let x ∈ {a, b}∗ be such that |x| = n for some n ≥ 0. Thus x =
a1a2 . . . an with each ai ∈ {a, b}. Then there is a finite automaton accepting
{x} with n + 2 states, namely initial state q0, intermediate states q1, . . .,
qn−1, accepting state qn, and sink state qn+1. Observe that for x = Λ
we have q0 = qn as both the initial and the accepting state. Each non-sink
state qi represents the prefix of length i of x and has a transition to the state
representing the next longer prefix and — for the “wrong” input symbol a
transition to the sink state; from the state qn representing x and from the
sink itself there are only transitions to the sink. Below is an example for a
word beginning with ab and with b as its last symbol.

a,b

a,b

q1

qn+1

qn
q0 q2 qn−1

a

a b b

b a

Observe that n+ 2 states are necessary because different prefixes need dif-
ferent states: if x = yz and x = uv with y and u two different prefixes of x,
then uz ̸= yz = x and hence uz should not be accepted, which implies that

1

u should be distinguished from y. That is, y and u should lead to different
states. Since x has n+1 different prefixes this implies that we need at least
n + 1 states in any finite automaton accepting {x}. Moreover, all prefixes
have to be distinguished from all non-prefixes of x since no word starting
with a non-prefix of x will ever lead to acceptance.

2.5 Let M = (Q,Σ, q0, A, δ) be an FA. We prove by induction on |y| that
for all x, y ∈ Σ∗ and for all q ∈ Q,
δ∗(q, xy) = δ∗(δ∗(q, x), y).
Let x ∈ Σ∗ be an arbitrary word.
basis: |y| = 0, that is, y = Λ. Since, by definition δ∗(p,Λ) = p for all states
p, it follows that δ∗(q, xy) = δ∗(q, x) = δ∗(δ∗(q, x),Λ) = δ∗(δ∗(q, x), y) as
required.
induction hypothesis: there is a k ≥ 0 such that for all z ∈ Σ∗ with |z| ≤ k,
and for all q ∈ Q, δ∗(q, xz) = δ∗(δ∗(q, x), z).
induction step: let |y| = k + 1, that is, y = za for some a ∈ Σ and z ∈ Σ∗

such that |z| = k.
We now have δ∗(q, xy) = δ∗(q, xza) = δ(δ∗(q, xz), a), by the definition of δ∗.
With the induction hypothesis we obtain δ(δ∗(q, xz), a) = δ(δ∗(δ∗(q, x), z), a)
which— again by the definition of δ∗ — equals δ∗(δ∗(q, x), za) = δ∗(δ∗(q, x), y).
Our claim now follows for the chosen x, but since that was an arbitrary word,
the statement has been proved for all x.
Using induction on |x| rather than on |y| would have been awkward (or even
impossible) given the structure of the (inductive) definition of δ∗.

2.6 Let M = (Q,Σ, q0, A, δ) be an FA. Let q ∈ Q be such that δ(q, a) = q
for all a ∈ Σ. This means that whatever the input symbol, if M is in state q
it will remain there. We use induction to prove that once in q, M will never
leave that state anymore whatever the input string it is being fed.
By definition, we have that δ((q,Λ) = q.
Now assume that there is an integer k ≥ 0 such that δ∗(q, z) = q, for all
z ∈ Σ∗ with |z| ≤ k. Let x ∈ Σ∗ be of length k + 1. So, x = za for some
a ∈ Σ and z ∈ Σ∗ with |z| = k. Consequently, we can use the induction
hypothesis and deduce that δ∗(q, x) = δ∗(q, za) = δ(δ∗(q, z), a) = δ(q, a) = q
by the property given for q.

2.10 a., b. and c. The desired automata each have (A,X) as initial state.
Next we apply the product construction to M1 and M2:

2

a b

(A,X) (B,X) (A, Y)
(B,X) (B,X) (C, Y)
(A, Y) (B,X) (A,Z)
(C, Y) (B,X) (A,Z)
(A,Z) (B,Z) (A,Z)
(B,Z) (B,Z) (C,Z)
(C,Z) (B,Z) (A,Z)

Note that the states (B, Y) and (C,X) which are not reachable from (A,X)
are not mentioned in the table for the product transition function (see ex-
ercise 3.29).
For L1∪L2, we have as accepting states {(C, Y), (C,Z), (A,Z), (B,Z)}, that
is any pair of original states in which at least one is accepting.
For L1∩L2, we have as accepting states {(C,Z)}, that is any pair of original
states in which both are accepting.
For L1−L2, we have as accepting states {(C, Y)}, that is any pair of original
states in which the first is accepting and the second not.
Drawing the automata is now easy.

2.11 Let M1 = (Q1,Σ, q1, A1, δ1) be an FA and let M2 = (Q2,Σ, q2, A2, δ2).
Define for all p ∈ Q1, q ∈ Q2, and a ∈ Σ: δ((p, q), a) = (δ1(p, a), δ2(q, a)).
We have to prove that δ∗((p, q), x) = (δ∗1(p, x), δ

∗
2(q, x)) for all p ∈ Q1,

q ∈ Q2, and x ∈ Σ∗ (see the proof of Theorem 2.15).
We use induction on |x|, the length of x.
If |x| = 0, then x = Λ and we have δ∗((p, q),Λ) = (p, q) = (δ∗1(p,Λ), δ

∗
2(q,Λ))

by the inductive definitions of δ∗, δ∗1 , and δ∗2 .
Let |x| = n+1. Then x = ya for some y ∈ Σ∗ and a ∈ Σ. Hence |y| = n and
according to the induction hypothesis: δ∗((p, q), y) = (δ∗1(p, y), δ

∗
2(q, y)).

So, δ∗((p, q), x) = δ∗((p, q), ya) = δ(δ∗((p, q), y)a) by the inductive definition
of δ∗. By the induction hypothesis δ(δ∗((p, q), y), a) = δ((δ∗1(p, y), δ

∗
2(q, y)), a)

and δ((δ∗1(p, y), δ
∗
2(q, y)), a) = (δ1((δ

∗
1(p, y), a), δ2((δ

∗
2(q, y), a)) by the defini-

tion of δ. Finally, using the inductive definition of δ∗1 and δ∗2, we derive
(δ1((δ

∗
1(p, y), a), δ2((δ

∗
2(q, y), a)) = (δ∗1(p, ya), δ

∗
2(q, ya)) = (δ∗1(p, x), δ

∗
2(q, x))

as desired.

• Show by an example that for some language L, any FA recognizing L must
have more than one accepting state. Characterize those languages for which
this is true.
Let L = {Λ, 0} ⊆ {0}∗. Observe that Λ and 0 are distinguishable with re-

3

spect to L, since they are distinguished by, e.g., the word z = 0: Λ0 ∈ L but
00 is not a word from L. Thus any FA accepting L has two distinct states
(see Lemma 3.1.) for Λ and 0. Since both words are in L, these states are
both accepting.
In general, for every language which contains at least two distinguishable
words, any FA recognizing that language has at least two accepting states.
This can — similar to the above — be seen as follows: Let M be an arbi-
trary FA accepting L and let u, v ∈ L be distinguishable with respect to L.
Then by Lemma 3.1, δ∗(q0, u) ̸= δ∗(q0, v) where q0 is the initial state of M .
Consequently, M has at least two accepting states.
Also the converse holds: for every language L that can be accepted by an
FA, it is the case that if no FA accepting L has less than two accepting
states, then L contains two words which are distinguishable with respect
to L. This can be proved once it has been shown that for every language
that can be accepted by an FA, there exists a minimal FA: two strings are
indistinguishable w.r.t. the language if and only if they lead to the same
state in that FA.

2.13 Consider the FA from Figure 2.17d. It accepts the language L consist-
ing of all strings from {a, b}∗ that do not contain aa and do not end in ab.
The simplest strings corresponding to its four states are Λ, a, ab, and aa. If
any two of these strings are distinguishable, then it follows from Theorem
2.21 that any FA recognizing L has at least 4 states.
for Λ and a and for ab and aa, choose z = a:
Λa ∈ L, aba ∈ L, but aa ̸∈ L and aaa ̸∈ L;
for Λ and ab, for Λ and aa, for a and ab, and for a and aa, choose z = Λ:
ΛΛ ∈ L, aΛ ∈ L, but abΛ ̸∈ L and aaΛ ̸∈ L.
Hence, there is no FA accepting L with fewer states than the given FA.

2.14 Let z be a word over the alphabet {a, b}. Any FA which accepts L =
{a, b}∗{z} has at least |z|+1 states. The reason is that z has |z|+1 prefixes
(from Λ to z itself) which all have to be distinguished in the automaton. If
z = xy and z = uv with |x| > |u|, then xy ∈ L, but uy ̸∈ L. Hence x and u
are distinguishable with respect to L.
No more states are needed, since there is no need to distinguish between a
word and the longest prefix of z which is a suffix of this word:
Consider a word x and let v be its longest suffix such that x = uv where v
is such that z = vw for some w. (Note that every word x has such a suffix!)
Then for all words y ∈ {0, 1}∗ we have
case |y| ≥ |z|: xy ∈ L if and only if vy ∈ L because it is only relevant

4

whether y ends with z or not;
or case |y| < |z|: then xy ∈ L if and only if uvy ∈ L if and only if vy ends
with z if and only if vy ∈ L.
Consequently, x and v are indistinguishable and we know how to define an
FA accepting L.
As an example we give an FA accepting {a, b}∗{babb} with 5 states:
q0 corresponding to matching suffix Λ; q1 for b; q2 for ba; q3 for bab; and q4
for babb, this is the final state since its last symbols form z = babb.

q1q0 q2 q3 q4

a b

a

ba

b a b b

a

2.15 Let L = {aa}∗, the language of all even length a-strings. Then we have
infinitely many pairs of distinguishable strings: for all i ≥ 0, the string a2i

and the string a2i+1 are distinguishable with respect to L.
Note that the language L is accepted by a FA (as is easy to see). In fact,
there are only two types of indistinguishable strings with respect to L (the
even length strings versus the odd length strings).

2.16 Let n ≥ 0. Let K be an arbitrary non-empty language consisting of
words of length n only. Then any FA that accepts K has at least n+2 states
which can be seen as follows:
First, we observe that if n = 0, then it must be the case that K = Λ and
any FA accepting K has 2 states (the initial state which is also the only
accepting state, and a sink state).
Next, we assume that n ≥ 1 and we consider a (fixed) word x ∈ K. Since
K ̸= ∅, such x exists. This x has (at least) two different prefixes x1 ̸= x2,
thus: x = x1y1 = x2y2 for some y1, y2. Obviously, x2y1 ̸∈ K and so x1 and
x2 can be distinguished w.r.t. K. Moreover (the infinitely many) words
which are not a prefix of a word in K can be distinguished from the n + 1
prefixes of x. Consequently, by Theorem 2.21, any FA accepting K has at
least n+ 2 states.
We conclude that for any infinite language L ⊆ {a, b}∗ any FA which accepts
its subset Ln = {x ∈ L | |x| = n} has at least n+ 2 states (s(n) = 2). The
language L = {a, b}∗ has the property that each of its Ln’s can be recognized
by an FA with exactly s(n) = n + 2 states. Any language that does not
contain two strings of the same length also has this property.

5

2.17 Let L = {anbn | n ≥ 0}.
a. Give strings x, y ∈ {a, b}∗ such that x ̸= y and xILy (that is x and y are
indistinguishable w.r.t. L).
x = a and y = ba: both are words not in L and both are not prefixes of any
word in L. This means that for all z ∈ {a, b}∗ we have xz ̸∈ L and yz ̸∈ L.
In general: every pair of words which both are not a prefix of a word in L
are indistinguishable.
x = ab and y = aabb: both are in L and any non-empty word concatenated
to them yields a word not in L. This means that xΛ ∈ L and yΛ ∈ L and
xz ̸∈ L and yz ̸∈ L for all non-empty words z. Hence, for all z ∈ {a, b}∗
we have xz ∈ L if and only if yz ∈ L and so x and y are indistinguishable
with respect to L. In general: every pair of non-empty words of L are
indistinguishable with respect to L. Note that Λ ∈ L can be distinguished
from x = ab, because for example Λa3b3 ∈ L but aba3b3 ̸∈ L.
x = aab and y = a3b2: both are not in L, adding a single b gives for each
a word in L, while all other words will lead to a word not in L. Hence we
have xΛ ̸∈ L and yΛ ̸∈ L , xb ∈ L and yb ∈ L, and xz ̸∈ L and yz ̸∈ L
for all z ∈ {a, b}∗ with z ̸= Λ and z ̸= b. Consequently, for all z ∈ {a, b}∗
we have xz ∈ L if and only if yz ∈ L. In general: every pair x = ambm−k

and y = anbn−k with n ̸= m and n > k or m > k are indistinguishable with
respect to L.
b. Consider am and an with m ̸= n. These words can be distinguished w.r.t.
L (that is amILa

n does not hold), because ambm ∈ L, but anbm ̸∈ L. From
Theorem 2.26 we conclude that any finite automaton recognizing L needs
a separate state δ∗(q0, a

k) for all k ≥ 0, a contradiction with an FA having
only finitely many states. Thus we conclude that L cannot be recognized
by a FA.

• Let M = (Q,Σ, q0, A, δ) be an FA and let M1 = (R,Σ, q0, A∩R, δ1) be the
FA obtained from M by deleting those states q ∈ Q that are not reachable
from q0 together with all transitions leading to and from them (i.e there is
no string x ∈ Σ∗ such that δ∗(q0, x) = q) Show that L(M1) = L(M).
Take R = {p ∈ Q | ∃x ∈ Σ∗ such that δ∗(q0, x) = p}. It consists of all
states in Q reachable from q0. Let δ1 is the restriction of δ to R, that is,
δ1(p, a) = δ(p, a) for all p ∈ R and all a ∈ Σ.
Since M1 is a “sub-automaton” of M it follows immediately that L(M1) ⊆
L(M). To prove the converse inclusion we consider an arbitrary word w ∈
L(M). Let p ∈ A be the accepting state such that δ∗(q0, w) = p. Hence p is
reachable: p ∈ A∩R. Moreover, every state s ∈ Q such that δ∗(q0, v) = s for
some prefix of w, is reachable from q0 and hence in R and all its transitions

6

are in δ1. Consequently, δ∗(q0, w) = δ∗1(q0, w) = p ∈ A ∩ R which implies
that w ∈ L(M1).

2.27
a. Let M1 en M2 be two FA’s over an input alphabet Σ.
Are there words in Σ that are not accepted by neither of the two FA’s is the
same of saying: Is Σ∗ − (L(M1) ∪ L(M2)) = ∅?
Algoritme: construeer een FA M3 met L(M3) = L(M1)∪L(M2) (zie bijvoor-
beeld de productconstructie in het bewijs van Theorem 3.4) en vervolgens
een FA M4 voor het complement Σ∗ −L(M3) (zie weer het bewijs van The-
orem 3.4). Gebruik het algoritme op pagina 187 om te bepalen of L(M4)
leeg is.
g. Gegeven een FA M met invoeralfabet Σ en twee strings x, y ∈ Σ∗.
Zijn x en y onderscheidbaar m.b.t. L(M)?
Algoritme: Minimaliseer M zoals beschreven in 5.2. De resulterende FA
M1 = (Q,Σ, q0, A, δ) accepteert L. Volg in M1 vanaf q0 het pad gelabeld
met x en ook het pad gelabeld met y en kijk of ze naar dezelfde toestand
leiden. Zoja: x en y zijn niet te onderscheiden m.b.t. L; zo nee, x en y zijn
wel te onderscheiden m.b.t. L.
(M1 heeft als minimale automaat de eigenschap dat δ∗(q0, x) = δ∗(q0, y) dan
en slechts dan als x IL y).

2.29
a. False: pal ⊆ {a, b}∗ is a nonregular subset of the regular language {a, b}∗.
b. False: Nonregular languages have finite subsets, and every finite language
is regular.
c. False: The union of any language over an alphabet Σ and its complement
is Σ∗ which is regular.
d. False: The intersection of any language and its complement is the empty
language which is regular.
e. True: The complement of a regular language is always regular (Theorem
3.4). Consequently a language is regular if and only if its complement is
regular.
f.: false;
g.: true;
h., i.: both false.
j. False: Let for all i ≥ 1, Li = {a, b}∗ −Ki with Ki = {a2i×n

b2
i×n | n ≥ 0}.

ThusK1 = {ab, a2b2, a4b4, a8b8, a16b16, . . .},K2 = {ab, a4b4, a16b16, . . .},K3 =
{ab, a8b8, a64b64, . . .} etc.
Clearly, Ki+1 ⊆ Ki for all i ≥ 1 which implies that Li ⊆ Li+1 for all i ≥ 1.

7

Furthermore it is not too difficult to see that each Ki is not regular, and
hence each Li is not regular.
Note that the shortest word in each Ki is ab and the next shortest word is
a2

i
b2

i
. Consequently,

∩∞
i=1Ki = {ab}, a regular language. This implies that∪∞

i=1 Li = {a, b}∗ −
∩∞

i=1Ki = {a, b}∗ − {ab} is also a regular language.

2.32 If L ⊆ {a, b}∗ consists of one single equivalence class w.r.t. IL, then are
all words in {a, b}∗ equivalent. Therefore, for every x, y ∈ {a, b}∗ it holds
that x = xΛ ∈ L if and only if y = yΛ ∈ L.
Thus L = ∅ or L = {a, b}∗.

2.33 L = {x} with x a word over {a, b}. Then IL has |x| + 2 equivalence
classes: one for each prefix of x and one containing all the words that are
not a prefix of x.

2.34 Let L be a language over an alphabet Σ and let x ∈ Σ∗ be such
that it is not a prefix of a word in L. For all words xy with y ∈ Σ∗,
there is no z such that xyz ∈ L. Consequently, the set S = {w ∈ Σ∗ |
there exists no y such that wy ∈ L} is infinite.
We need to prove that S is an equivalence class of IL: let u, v be two words
from S. Then for all words z ∈ Σ∗ we have that uz ̸∈ L and vz ̸∈ L since
neither u nor v are a prefix of a word in L. Thus, u IL v. Hence all words in
S are indistinguishable with respect to L and so S is contained in a single
equivalence class of IL.
Next let u ∈ S and v ̸∈ S. Then there is a word y such that vy ∈ L, but
uy ̸∈ L. Hence u and v are distinguishable with respect to L and thus belong
to different equivalence classes. Together with the above this implies that S
is exactly one infinite equivalence class of IL.

2.35 Let L ∈ Σ∗. If the equivalence class [Λ] of IL contains a word w
different from Λ, then for all z ∈ Σ∗ we have:
wz ∈ L if and only if Λz = z ∈ L.
It follows that for all i ≥ 0 and for all y ∈ Σ∗:
wi+1y = w(wiy) ∈ L if and only if wiy = Λ(wiy) ∈ L.
Thus wi+1 ILw

i for all i ≥ 0, that is, [Λ] contains {w}∗ and hence is infinite
(because w ̸= Λ).

2.36 L ⊆ {a, b}∗ is a language for which we are asked to give a finite
automaton. We apply the construction used to prove Theorem 5.1.
IL has 4 equivalence classes [Λ], [a], [ab], and [b] which we will use as states.
[Λ] will be the initial state. Moreover, since ab ∈ L and Λ, a, b ̸∈ L, we

8

designate [ab] as the only final state of the automaton.
The transition function δ is defined as follows.
δ([Λ], a) = [a] and δ([Λ], b) = [b];
δ([a], b) = [ab] and since a IL aa, we set δ([a], a) = [aa] = [a];
similarly, δ([ab], a) = [aba] = [b] and δ([ab], b) = [abb] = [a].
What remains are the transitions from [b]. We know that b is not a prefix
of any word in L. Hence (again using exercise 5.4), [b] is the equivalence
class consisting of all words which can never be extended to a word in L.
In the automaton this equivalence class is a sink: δ([b], a) = [ba] = [b] and
δ([b], b) = [bb] = [b].
(Draw the automaton.)

2.39 L = {anbn | n ≥ 0}. (See also Example 2.37)
The partition of {a, b}∗ in equivalence classes of IL is the same as for the
case that L − {Λ}, namely: {ai}, for each i ≥ 0, {aibj} for all i > j > 0,
and {x ∈ {a, b}∗ |̸ ∃y.xy ∈ L}.

2.40 L = {x ∈ {a, b}∗ | na(x) = nn(x)}, the language consisting of all words
over {a, b} with an equal number of a’s and b’s.
a. For any two words x, y ∈ {a, b}∗ it is the case that x IL y whenever the
difference between the number of a’s and b’s in x and y is the same. To
prove this statement assume that na(x)−nb(x) = na(y)−nb(y) and consider
an arbitrary word z ∈ {a, b}∗.
Then xz ∈ L if and only if
na(xz)− nb(xz) = 0 if and only if
na(x) + na(z)− (nb(x) + nb(z)) = na(x)− nb(x) + na(z)− nb(z) = 0
if and only if
na(y)− nb(y) + na(z)− nb(z) = 0 if and only if
na(yz)− nb(yz) = 0 if and only if yz ∈ L.
b. Conversely, for any two words x, y ∈ {a, b}∗ it is the case that if x IL y,
then the difference between the number of a’s and b’s in x and y is the
same. To prove this statement we consider two words x, y ∈ {a, b}∗ such
that na(x) − nb(x) ̸= na(y) − nb(y). Now let z ∈ {a, b}∗ be such that
nb(z) − na(z) = na(x) − nb(x). Consequently, na(xz) − nb(xz) = na(x) +
na(z)−nb(x)−nb(z) = (na(x)−nb(x))− (nb(z)−na(z)) = 0. Thus xz ∈ L.
However, since na(y)−nb(y) ̸= na(x)−nb(x), we know that na(y)−nb(y) ̸=
nb(z)−na(z) and thus na(yz)−nb(yz) = (na(y)−nb(y))−(nb(z)−na(z)) ̸= 0
which implies that yz ̸∈ L. Hence x IL y does not hold. Summarizing: if
x IL y it must be the case that na(x)− nb(x) = na(y)− nb(y).
c. From a. and b. it follows that an equivalence class of IL containing a

9

word x is determined by the difference na(x)− nb(x): a string y is in [x] if
and only if na(y)− nb(y) = na(x)− nb(x).
This means that we have the following equivalence classes:
. . . , [bk] , . . . , [b3] , [b2] , [b] , [Λ] , [a] , [a2] , [a3] , . . . , [ak] , . . . ,
where for all k ≥ 0, the equivalence class [bk] consists of all words w over
{a, b} with nb(w)− na(w) = k, and the equivalence class [ak] consists of all
words w over {a, b} with na(w)− nb(w) = k.
Note that IL has an infinite number of equivalence classes which implies
that L is not a regular language.

2.55 See figure 2.45.
a. We construct S = {(p, q) ⊆ Q × Q | p ̸≡ q} recursively, following
Algorithm 2.40. In the first pass we note that 5 is an accepting state and
the other states are not. Thus we mark (with 1) in the Q × Q table, the
entries (5, 1), (5, 2), (5, 3), and (5, 4). (For symmetry reasons it is sufficient
to fill in only the lower triangle. At the diagonal, we have the identities
(p, p) which are never in S).
In the second pass (given as 2), we find:
(1, 2) ∈ S, because δ(1, b) = 3 and δ(2, b) = 5, and (3, 5) ∈ S;
(2, 3) ∈ S, because δ(2, b) = 5 and δ(3, b) = 3, and (5, 3) ∈ S;
(1, 4) ∈ S, because δ(1, b) = 3 and δ(4, b) = 5, and (3, 5) ∈ S;
(3, 4) ∈ S, because δ(3, b) = 3 and δ(4, b) = 5, and (3, 5) ∈ S;
and no more.
In the third pass, we find no new pairs.

1 2 3 4 5

1 =

2 2 =

3 2 =

4 2 2 =

5 1 1 1 1 =

Consequently, we have the following equivalence classes: {1, 3}, {2, 4} and
{5}, which gives a minimal FA with three states q0 = {1, 3}, the initial
state; q1 = {2, 4}; and q3 = {5}, the only final state. Its transition function
is given in the next table:

10

a b

q0 = {1, 3} q1 q0
q1 = {2, 4} q0 q3
q3 = {5} q1 q3

Draw this FA.
b. The given FA is already minimal.

2.57 You are asked for a number of languages over the alphabet {a, b} to
determine whether they can be accepted by an FA or not. If you do well
(go after the number of equivalence classes, use the pumping lemma or try
to make up an FA for the language) then only given the language in b. is
regular.
a. Let L = {x ∈ {a, b}∗ | ∃w, y ∈ {a, b}∗.w ̸= Λ ∧ x = wwy}, and take two
words v = abn and v′ = abm for n,m > 0 and n ̸= m. For z = abn we have
that vz = abnabn ∈ L whereas v′z = abmabn ̸∈ L. It follows that all words
abn for n > 0 are pairwise distinguishable, and therefore there can be no FA
recognizing L, as it would need infinitely many states by Theorem 2.26.
b. Let L = {x ∈ {a, b}∗ | ∃y, w, z : w ̸= Λ ∧ x = ywwz}.
Claim: x ∈ L if and only if x contains aa, bb, abab or baba as a subword.
Proof of the claim: if aa, bb, abab of baba a subword is of x, dan is x by
definition in L.
Conversely, assume that x ∈ L. Then |x| ≥ 2. Let aa and bb be not subwords
of x. Then in x it holds that every a that is not the last symbol of x, is
followed by a b, en that every b that is not the last symbol of x, is followed
by an a. Let now y, w, z ∈ {a, b}∗ with w ̸= Λ such that x = ywwz. Then we
know that w ̸= 0 and w ̸= 1; thus either w = abu or w = bau. If u = Λ, then
we are done. Otherwise |u| ≥ 2, and w = ababv or w = babav, respectively,
en we are ready also in this case.
The only case that remains to check is when |u| = 1. If w = abu, than must
be u = a and x = ywwz = yabaabaz, contradicting our assumption that
x does not contain aa as subword. Analogously, if w = bau, then must be
u = b and is x = ywwz = ybabbabz, contradicting our assumption that x
does not contain bb as subword.
Summarizing, if x ∈ L, then x contains at least one of the words aa, bb, abab
and baba as subword.
Now it is easy to draw a FA that recognizes L:

11

a
a

b

b

ba

a,b

a,b

b

a

a

b
a,b

2.58 Bekijk L = {x ∈ {a, b}∗ : na(x) = nb(x) ≥ 0} de taal bestaande uit
alle woorden met evenveel a-en als b-en. Volgens exercise 5.13 en Example
5.7 is deze taal niet regulier. Nu geldt L∗ = L, want elk concatenatie van (al
dan niet verschillende) woorden uit L levert weer een woord met evenveel
a-en als b-en. Dus L∗ is niet regulier.

2.59 Bekijk pal de taal van alle palindromen over {a, b}. We weten dat pal
niet regulier is, maar pal∗ is wel regulier. Immers Λ is een palindroom en
elke letter is een palindroom van lengte 1, dus elk woord over {a, b} is een
concatenatie van palindromen. Dus pal∗ = {a, b}∗, een reguliere taal.

version 19 September 2011

12

