Exercise 4.15/4.19.

Describe the language generated by the CFG with productions

$$S \to a \mid Sa \mid bSS \mid SSb \mid SbS$$

Motivate your answer.

Exercise 4.34. 🌲

Show that the CFG with productions

 $S \rightarrow a \mid Sa \mid bSS \mid SSb \mid SbS$

is ambiguous.

Exercise 4.36. 🐥

In each case below, decide whether the grammar is ambiguous or not, and prove your answer.

b. $S \rightarrow SS \mid bS \mid a$

c. $S \rightarrow SaS \mid b$

e. $S \rightarrow TT$ $T \rightarrow aT \mid Ta \mid b$

f. $S \rightarrow aSa \mid bSb \mid aAb \mid bAa$ $A \rightarrow aAa \mid bAb \mid a \mid b \mid \Lambda$

g. $S \to aT \mid bT \mid \Lambda$ $T \to aS \mid bS$

Exercise 4.38.

In each case below, show that the grammar is ambiguous, and find an equivalent unambiguous grammar.

- **a.** \clubsuit $S \rightarrow SS \mid a \mid b$
- **b.** $\clubsuit S \to ABA$ $A \to aA \mid \land B \to bB \mid \land$
- **C.** \clubsuit $S \rightarrow aSb \mid aaSb \mid \Lambda$
- **d.** $S \rightarrow aSb \mid abS \mid \Lambda$

From lecture 9:

Exercise 4.45. \blacklozenge

Use induction to prove that the CFG below is unambiguous.

b. The CFG with productions $S \to (S)S \mid \Lambda$

Exercise.

Let G be a context-free grammar with start variable S and the following productions:

$$S \to aSbS \mid bSaS \mid \Lambda$$

a. Show that $L(G) = AEqB = \{x \in \{a,b\}^* \mid n_a(x) = n_b(x)\}$. That is, argue why $L(G) \subseteq AEqB$ and why $AEqB \subseteq L(G)$. You do not have to give formal proofs.

b. Show that G is ambiguous, by giving a string $x \in L(G)$ and two different derivation trees for x in G.

c. A Give an unambiguous context-free grammar for *AEqB*.

Exercise 4.7.

Describe the language generated by the CFG with productions

$$S \to ST \mid \Lambda \quad T \to aS \mid bT \mid b$$

Motivate your answer.