Exercise 3.7.

Find a regular expression corresponding to each of the following subsets of $\{a, b\}^*$.

a. \clubsuit The language of all strings containing exactly two a 's.

c. \clubsuit The language of all strings that do not end with ab .

e. \clubsuit The language of all strings not containing the substring aa .

f. \clubsuit The language of all strings in which the number of a 's is even.

g. ♣ The language of all strings containing no more than one occurrence of the string aa . (The string aaa should be viewed as containing two occurrences of $aa.$)

Exercise 3.7.

Find a regular expression corresponding to each of the following subsets of $\{a, b\}^*$.

i. The language of all strings containing both bb and aba as substrings.

j. The language of all strings not containing the substring aaa .

k. ♣ The language of all strings not containing the substring bba.

I. \clubsuit The language of all strings containing both aba and bab as substrings.

m. \clubsuit The language of all strings in which the number of a 's is even and the number of b's is odd.

Exercise 3.1. ♣

In each case below, find a string of minimum length in $\{a, b\}^*$ not in the language corresponding to the given regular expression.

a. $b^*(ab)^*a^*$ **b.** $(a^* + b^*)(a^* + b^*)(a^* + b^*)$ Exercise 3.2. Consider the two regular expressions

$$
r = a^* + b^* \qquad s = ab^* + ba^* + b^*a + (a^*b)^*
$$

- **a.** Find a string corresponding to r but not to s .
- **b.** Find a string corresponding to s but not to r .
- c. Find a string corresponding to both r and s .
- **d.** Find a string in $\{a, b\}^*$ corresponding to neither r nor s.

Exercise 3.10 . \clubsuit

a. If L is the language corresponding to the regular expression $(aab + bbaba)*baba$, find a regular expression corresponding to $L^r = \{x^r \mid x \in L\}.$

b. Using the example in part (a) as a model, give a recursive definition (based on Definition 3.1) of the reverse e^r of a regular expression ^e.

c. Show that for every regular expression e , if the language L corresponds to e , then L^r corresponds to e^r .

Exercise 3.41. For each of the following regular expressions, draw an NFA accepting the corresponding language, so that there is ^a recognizable correspondence between the regular expression and the transition diagram.

e. $(a^*bb)^* + bb^*a^*$

Exercise 3.42. For part (e) of Exercise 3.41, draw the NFA that is obtained by ^a literal application of Kleene's theorem, without any simplifications.

Exercise 3.51 (variant).

Use the algorithm of Brzozowski and McCluskey to find ^a regular expression corresponding to the FA below.

a.

Exercise 4.10. Find context-free grammars generating each of the languages below.

- a. \bullet $\{a^ib^j \mid i \leq j\}$
- c. \bullet $\{a^{i}b^{j} | j = 2i\}$
- e. $\clubsuit \{a^i b^j \mid j \leq 2i\}$
- f. $\clubsuit \{a^ib^j \mid j < 2i\}$
- d. $\clubsuit \{a^i b^j \mid i \leq j \leq 2i\}$
- d2. $\{a^ib^j \mid i < j < 2i\}$

Exercise 4.12.

Find a context-free grammar generating the language ${a^i b^j c^k}$ | $i \neq j + k$ }

Exercise $4.1.$ \clubsuit

In each case below, say what language (a subset of $\{a, b\}^*$) is generated by the context-free grammar with the indicated productions.

- **b.** $S \rightarrow SS \mid bS \mid a$
- c. $S \rightarrow SaS \mid b$
- e. $S \to TT$ $T \to aT \mid Ta \mid b$

f. $S \rightarrow aSa \mid bSb \mid aAb \mid bAa \qquad A \rightarrow aAa \mid bAb \mid a \mid b \mid \Lambda$

g. $S \to aT \mid bT \mid \Lambda$ $T \to aS \mid bS$

Exercise 4.3. ♣

In each case below, find ^a CFG generating the given language.

b. The set of even-length strings in $\{a, b\}^*$ with the two middle symbols equal.

c. The set of odd-length strings in $\{a, b\}^*$ whose first, middle, and last symbols are all the same.

Exercise 4.4. ♣

In both parts below, the productions in a CFG G are given. In each part, show first that for every string $x \in L(G)$, $n_a(x) =$ $n_b(x)$; then find a string $x \in \{a, b\}^*$ with $n_a(x) = n_b(x)$ that is not in $L(G)$.

- a. $S \rightarrow SabS \mid SbaS \mid \Lambda$
- **b.** $S \rightarrow aSb \mid bSa \mid abS \mid baS \mid Sab \mid Sba \mid \Lambda$

Exercise 4.9. Suppose that $G_1 = (V_1, \{a, b\}, S_1, P_1)$ and $G_2 =$ $(V_2, \{a, b\}, S_2, P_2)$ are CFGs and that $V_1 \cap V_2 = \emptyset$.

a. It is easy to see that no matter what G_1 and G_2 are, the CFG $G_u = (V_u, \{a, b\}, S_u, P_u)$ defined by $V_u = V_1 \cup V_2$, $S_u = S_1$ and $P_u = P_1 \cup P_2 \cup \{S_1 \rightarrow S_2\}$ generates every string in $L(G_1) \cup L(G_2)$. Find grammars G_1 and G_2 (you can use $V_1 = \{S_1\}$ and $V_2 = \{S_2\}$) and a string $x \in L(G_u)$ such that $x \notin L(G_1) \cup L(G_2)$.

b. As in part (a), the CFG $G_c = (V_c, \{a, b\}, S_c, P_c)$ defined by $V_c = V_1 \cup V_2$, $S_c = S_1$ and $P_c = P_1 \cup P_2 \cup \{S_1 \rightarrow S_1 S_2\}$ generates every string in $L(G_1)L(G_2)$.

Find grammars G_1 and G_2 (again with $V_1 = \{S_1\}$ and $V_2 = \{S_2\}$) and a string $x \in L(G_c)$ such that $x \notin L(G_1)L(G_2)$.

Exercise 4.9. (continued)

c. The CFG $G^* = (V, \{a, b\}, S, P)$ defined by $V = V_1$, $S = S_1$ and $P = P_1 \cup \{S_1 \rightarrow S_1S_1 \mid \Lambda\}$ generates every string in $L(G_1)^*$. Find a grammar G_1 with $V_1 = \{S_1\}$ and a string $x \in L(G^*)$ such that $x \notin L(G_1)^*$.