
Exercise 3.21. ♣

Consider the following transition table for an NFA with states
1–5, initial state 1 and input alphabet {a, b}. There are no Λ-
transitions:

q δ(q, a) δ(q, b)

1 {1,2} {1}
2 {3} {3}
3 {4} {4}
4 {5} ∅
5 ∅ {5}

a. Draw a transition diagram of the NFA (note that the accept-
ing states are not specified).

b. Calculate δ∗(1, ab).
Hint: first calculate δ∗(1,Λ), then δ∗(1, a), then δ∗(1, ab).

c. Calculate δ∗(1, abaab).
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Exercise 3.24. ♣

Let M = (Q,Σ, q0, A, δ) be an NFA with no Λ-transitions.

Show that for every q ∈ Q and every σ ∈ Σ, δ∗(q, σ) = δ(q, σ).

2



Exercise 3.33. ♣

Give an example of a regular language L containing Λ that cannot

be accepted by any NFA having only one accepting state and no

Λ-transitions, and show that your answer is correct.
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Exercise 3.22.

A transition table is given for an NFA with seven states.

q δ(q, a) δ(q, b) δ(q,Λ)

1 ∅ ∅ {2}
2 {3} ∅ {5}
3 ∅ {4} ∅
4 {4} ∅ {1}
5 ∅ {6,7} ∅
6 {5} ∅ ∅
7 ∅ ∅ {1}

Find:

d. ♣ δ∗(1, ba)

Hint: first calculate δ∗(1,Λ), then δ∗(1, b), then δ∗(1, ba).

e. δ∗(1, ab)

f. δ∗(1, ababa)
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Exercise 3.37.

For each part below, use the algorithm from the lecture to draw
an NFA with no Λ-transitions accepting the same language as
the NFA pictured.
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Exercise.

Our construction:
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a

Λ-removal

Given NFA M = (Q,Σ, δ, q0, A),

construct NFA M1 = (Q,Σ, δ1, q0, A1) without Λ-transitions:

• whenever q ∈ ΛM({p}) and r ∈ δ(q, a), add r to δ1(p, a)

• whenever ΛM({p}) ∩A 6= ∅, add p to A1.

continued on next slide. . .
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Exercise. (ctd.)

Is it possible to invert the construction:
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Λ-removal

Given NFA M = (Q,Σ, δ, q0, A),

construct NFA M1 = (Q,Σ, δ1, q0, A1) without Λ-transitions:

• whenever q ∈ δ(p, a) and r ∈ ΛM({q}), add r to δ1(p, a)

• whenever p ∈ A and q ∈ ΛM({p}), add q to A1.
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Exercise 3.40.

For each part below, draw an FA accepting the same language

as the NFA shown.
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Exercise 3.32.

Let M = (Q,Σ, q0, A, δ) be an NFA accepting a language L.

Assume that there are no transitions to q0, that A has only one

element, qf , and that there are no transitions from qf .

a. Let M1 be obtained from M by adding Λ-transitions from q0
to every state that is reachable from q0 in M .

(If p and q are states, q is reachable from p if there is a string

x ∈ Σ∗ such that q ∈ δ∗(p, x).)

Describe (in terms of L) the language accepted by M1.

b. Let M2 be obtained from M by adding Λ-transitions to qf
from every state from which qf is reachable in M .

Describe (in terms of L) the language accepted by M2.

c. Let M3 be obtained from M by adding both the Λ-transitions

in (a) and those in (b).

Describe (in terms of L) the language accepted by M3.
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Exercise 3.7.

Find a regular expression corresponding to each of the following

subsets of {a, b}∗.

a. ♣ The language of all strings containing exactly two a’s.

c. ♣ The language of all strings that do not end with ab.

e. ♣ The language of all strings not containing the substring aa.

f. ♣ The language of all strings in which the number of a’s is

even.

g. ♣ The language of all strings containing no more than one

occurrence of the string aa. (The string aaa should be viewed

as containing two occurrences of aa.)
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Exercise 3.7.

Find a regular expression corresponding to each of the following
subsets of {a, b}∗.

i. The language of all strings containing both bb and aba as
substrings.

j. The language of all strings not containing the substring aaa.

k. ♣ The language of all strings not containing the substring
bba.

l. ♣ The language of all strings containing both aba and bab as
substrings.

m. ♣ The language of all strings in which the number of a’s is
even and the number of b’s is odd.
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Exercise 3.1. ♣

In each case below, find a string of minimum length in {a, b}∗ not

in the language corresponding to the given regular expression.

a. b∗(ab)∗a∗

b. (a∗ + b∗)(a∗ + b∗)(a∗ + b∗)
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Exercise 3.2. Consider the two regular expressions

r = a∗ + b∗ s = ab∗ + ba∗ + b∗a+ (a∗b)∗

a. Find a string corresponding to r but not to s.

b. Find a string corresponding to s but not to r.

c. Find a string corresponding to both r and s.

d. Find a string in {a, b}∗ corresponding to neither r nor s.
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Exercise 3.10. ♣

a. If L is the language corresponding to the regular expression

(aab + bbaba)∗baba, find a regular expression corresponding to

Lr = {xr | x ∈ L}.

b. Using the example in part (a) as a model, give a recursive

definition (based on Definition 3.1) of the reverse er of a regular

expression e.

c. Show that for every regular expression e, if the language L

corresponds to e, then Lr corresponds to er.
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Exercise 3.41. For each of the following regular expressions,

draw an NFA accepting the corresponding language, so that

there is a recognizable correspondence between the regular ex-

pression and the transition diagram.

e. (a∗bb)∗ + bb∗a∗
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Exercise 3.42. For part (e) of Exercise 3.41, draw the NFA that

is obtained by a literal application of Kleene’s theorem, without

any simplifications.
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Exercise 3.51 (variant).

Use the algorithm of Brzozowski and McCluskey to find a regular

expression corresponding to the FA below.
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