From exercise class 2:

Exercise 2.26.

```
The pumping lemma says that
if M accepts a language L,
and if n is the number of states of M,
then for every x \in L satisfying |x| \ge n, \ldots
```

Show that the statement provides no information if L is finite: If M accepts a finite language L, and n is the number of states of M, then L can contain no strings of length n or greater. From lecture 2:

FA
$$M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)$$
 $i = 1, 2$

Product construction

Construct FA $M = (Q, \Sigma, q_0, A, \delta)$ such that $-Q = Q_1 \times Q_2$ $-q_0 = (q_1, q_2)$ $-\delta((p,q), \sigma) = (\delta_1(p, \sigma), \delta_2(q, \sigma))$ -A as needed

Theorem 2.15 (Parallel simulation).

 $-A = \{(p,q) \mid p \in A_1 \text{ or } q \in A_2\}, \text{ then } L(M) = L(M_1) \cup L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \in A_2\}, \text{ then } L(M) = L(M_1) \cap L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) + L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) + L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) + L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) + L(M_2) \\ -A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) + L(M_2) \\ -A = L(M_1) + L(M_2) + L(M_$

Exercise 2.27.

Describe decision algorithms to answer each of the following questions.

- **a.** \clubsuit Given two FAs M_1 and M_2 , are there any strings that are accepted by neither?
- **d.** \blacklozenge Given an FA *M* accepting a language *L*, and a string *x*, is *x* a prefix of an element of *L*?
- **g.** Given two FAs M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?

Exercise 2.13. 🐥

For the FA pictured below, show that there cannot be any other FA with fewer states accepting the same language.

Exercise 2.17. 🖡

Let L be the language $AnBn = \{a^n b^n \mid n \ge 0\}.$

a. Find two distinct strings x and y in $\{a, b\}^*$ that are not L-distinguishable.

b. Find an infinite set of pairwise *L*-distinguishable strings.

Exercise 2.15. 🐥

Suppose L is a subset of $\{a, b\}^*$.

If x_0, x_1, \ldots is a sequence of distinct strings in $\{a, b\}^*$, such that for every $n \ge 0$, x_n and x_{n+1} are *L*-distinguishable, does it follow that the strings x_0, x_1, \ldots are pairwise *L*-distinguishable?

Either give a proof that it does follow,

or find an example of a language L and strings x_0, x_1, \ldots that represent a counterexample.

Exercise 2.21. For each of the following languages $L \subseteq \{a, b\}^*$, show that the elements of the infinite set $\{a^n \mid n \ge 0\}$ are pairwise *L*-distinguishable.

a.
$$\clubsuit$$
 $L = \{a^i b a^{2i} \mid i \ge 0\}$

b.
$$\clubsuit \triangleq L = \{a^i b^j a^k \mid k > i + j\}$$

d.
$$\clubsuit$$
 $L = \{a^i b^j \mid j \text{ is a multiple of } i\}$

e.
$$\clubsuit L = \{x \in \{a, b\}^* \mid n_a(x) < 2n_b(x)\}$$

f. \clubsuit $L = \{x \in \{a, b\}^* \mid \text{ no prefix of } x \text{ has more } b$'s than a's $\}$

h. $L = \{ww \mid w \in \{a, b\}^*\}$

7