Automata Theory

Mark van den Bergh / Rudy van Vliet

Bachelor Informatica

Data Science and Artificial Intelligence
Universiteit Leiden

Fall 2024

4 ∄ ▶

Let $L = \{x \in \{a, b\}^* \mid x \text{ does not contain } bb\}.$

The set $\{\Lambda, b, bb\}$ is pairwise L-distinguishable, because $\Lambda b = b \in L$, but $bb \notin L$; $\Lambda \Lambda = \Lambda \in L$, but $bb\Lambda = bb \notin L$; $b\Lambda = b \in L$, but $bb\Lambda = bb \notin L$.

Or:

$$L/\Lambda = L;$$

 $L/b = \{x \in L \mid x \text{ does not begin with } b\};$

$$L/bb = \emptyset$$
.

All are different.

Theorem

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an FA accepting $L \subseteq \Sigma^*$.

If $x, y \in \Sigma^*$ are L-distinguishable, then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$.

For every $n \geqslant 2$, if there is a set of n pairwise L-distinguishable strings in Σ^* , then Q must contain at least n states.

Hence, indeed: if $\delta^*(q_0, x) = \delta^*(q_0, y)$, then x and y are not L-distinguishable.

Proof. Suppose x and y are L-distinguishable. W.l.o.g. there exists some $z \in \Sigma^*$ such that $xz \in L$ and $yz \notin L$. In other words, $\delta^*(q_0, xz) \in A$ and $\delta^*(q_0, yz) \notin A$. Hence, $\delta^*(q_0, xz) \neq \delta^*(q_0, yz)$.

By Exercise 2.5, we may rewrite $\delta^*(q_0, xz) = \delta^*(\delta^*(q_0, x), z)$ and $\delta^*(q_0, yz) = \delta^*(\delta^*(q_0, y), z)$. Hence, we conclude that $\delta^*(\delta^*(q_0, x), z) \neq \delta^*(\delta^*(q_0, y), z)$, so also $\delta^*(q_0, x) \neq \delta^*(q_0, y)$ must hold.

[M] Thm 2.21

Strings with a in the 3rd symbol from the end

L the language of strings in $\{a, b\}^*$ with at least 3 symbols and an a in the 3rd position from the end.

[M] E. 2.24

Characterization

Theorem

For every language $L \subseteq \Sigma^*$, if there is an infinite set S of pairwise L-distinguishable strings, then L cannot be accepted by a finite automaton.

[M] Thm 2.26

$$L = \{a^ib^jc^j \mid i \geqslant 1 \text{ and } j \geqslant 0\} \cup \{b^jc^k \mid j \geqslant 0 \text{ and } k \geqslant 0\}$$

We claim $\{ab^n \mid n \geqslant 1\}$ is pairwise *L*-distinguishable. Indeed, for $m \neq n$, we find that $ab^m c^m \in L$, but $ab^n c^m \neq L$.

[M] E 2.39

$$Pal = \{x \in \{a, b\}^* \mid x = x^r\}$$

We claim $\{a^nb \mid n \geqslant 1\}$ is pairwise *L*-distinguishable. Indeed, for $m \neq n$, we find that $a^mba^m \in L$, but $a^nba^m \notin L$.

R equivalence relation on X

- reflexive: $\forall x \in X : xRx$
- symmetric: $\forall x, y \in X : xRy \Leftrightarrow yRx$
- transitive: $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$

equivalence class
$$[x]_R = \{ y \in X \mid yRx \}$$

short: $[x]$
partition of X

[M] Sect. 1.3

Definition

For a language $L \subseteq \Sigma^*$, we define the relation \equiv_L (an equivalence relation) on Σ^* as follows: for $x, y \in \Sigma^*$

$$x \equiv_L y$$
 if and only if x and y are L-indistinguishable

Check properties of equivalence relation!

Note: $x \equiv_L y$ if and only if L/x = L/y.

 \equiv_L is right invariant: $x \equiv_L y$ implies $xz \equiv_L yz$

Book uses I_L for \equiv_L

Example

$$L = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$$

Remember: $\{\Lambda, a, aa\}$ pairwise L-distinguishable.

Equivalence classes:

$$[\Lambda] = \{x \in \{a, b\}^* \mid x \text{ does not end in } a\};$$

$$[a] = \{x \in \{a, b\}^* \mid x \text{ ends in } a \text{ but not in } aa\};$$

$$[aa] = L.$$

Note: $[\Lambda] \cup [a] \cup [aa] = \{a, b\}^*$.

From lecture 1:

Example

$$L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$$

$$b \qquad a \qquad a \qquad a$$

$$b \qquad a \qquad a \qquad a$$

$$b \qquad a \qquad a \qquad a$$

[M] E. 2.1

State q in FA \approx $L_q = \{x \in \Sigma^* \mid \delta^*(q_0, x) = q\}$

Theorem

If $L \subseteq \Sigma^*$ can be accepted by a finite automaton, then the set Q_L of equivalence classes of the relation \equiv_L is finite.

Conversely, if the set Q_L is finite, the finite automaton $M_L = (Q_L, \Sigma, q_0, A, \delta)$ accepts L, where $q_0 = [\Lambda]$ $A = \{q \in Q_L \mid q \subseteq L\}$ $\delta([x], \sigma) = [x\sigma]$

Finally, M_L has the fewest states of any FA accepting L.

Note:

If $x \in L$, then $[x] \subseteq L$ (L is union of equivalence classes)

Right invariant $x \equiv_L y$ implies $x\sigma \equiv_L y\sigma$

[M] Thm 2.36

4 ∄ →

Exercise 2.36.

For a certain language $L \subseteq \{a, b\}^*$, \equiv_L has exactly four equivalence classes. They are $[\Lambda]$, [a], [ab] and [b].

It is also true that the three strings a, aa, and abb are all equivalent, and that the two strings b and aba are equivalent.

Finally, $ab \in L$, but Λ and a are not in L, and b is not even a prefix of any element of L.

Draw an FA accepting L.

Example

Equivalence classes of \equiv_L , where $L = AnBn = \{a^nb^n \mid n \geqslant 0\}$

Note: $\{a^n \mid n \geqslant 1\}$ is pairwise distinguishable.

$$[a^n] = \{a^n\}$$
, because $L/a^n = \{a^k b^{n+k} \mid k \geqslant 0\}$ all different.

Other classes:

$$[ab] = L - \{\Lambda\};$$

 $[b] = \{x \in \{a, b\}^* \mid xz \notin L \text{ for all } z \in \{a, b\}^*\};$

Infinitely many equivalence classes, so no FA.

[M] E 2.37

Recall $L_q = \{ x \in \Sigma^* \mid \delta^*(q_0, x) = q \}$

Equivalence relation \equiv_L induces equivalence relation \equiv on states

Each L_q is subset of equivalence class under \equiv_L

 L_p and L_q may be subset of same equivalence class, i.e., L_p , $L_q \subseteq [x]$ for some $x \in \Sigma^*$.

 $p \equiv q \iff L_p$ and L_q are subset of same equivalence class $p \not\equiv q \iff$ for some $z \in \Sigma^*$ exactly one of $\delta^*(p,z)$ and $\delta^*(q,z)$ is in A

Definition

 S_M : set of pairs (p, q) such that $p \not\equiv q$

- ① If exactly one of p and q is in A, then $(p, q) \in S_M$
- 2 If for some $\sigma \in \Sigma$, $(\delta(p, \sigma), \delta(q, \sigma)) \in S_M$, then $(p, q) \in S_M$

Automata Theory Minimization 15 / 21

ALGORITHM mark pairs of non-equivalent states

start by marking pairs (p, q) where exactly one p, q in A repeat

for each unmarked pair (p, q)

check whether there is a σ such that $(\delta(p, \sigma), \delta(q, \sigma))$ is marked then mark (p, q)

until this pass does not mark new pairs

[M] Algo 2.40

[M] Fig 2.42

[M] Fig 2.42

[M] Fig 2.42

Resulting (minimal) FA...

[M] Fig 2.42

[M] Fig 2.42