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Practice induction

Exercise 2.5.
Suppose M = (Q,Σ, q0,A, δ) is an FA, q is an element of Q, and x and y
are strings in Σ∗. Using structural induction on y , prove the formula

δ∗(q, xy) = δ∗(δ∗(q, x), y)

Proof. Induction on |y |. If |y | = 0, i.e., y = Λ, then

δ∗(q, xy) = δ∗(q, x) = δ(δ∗(q, x),Λ) = δ∗(δ∗(q, x),Λ)

is (almost trivially) true. Next, suppose the statement is true for |y | < n
and consider y such that y = zσ, |y | = n. Then

δ∗(q, xy) = δ(δ∗(q, xz),σ) defn. δ∗, y = zσ

= δ(δ∗(δ∗(q, x), z),σ) ind. hypothesis

= δ∗(δ∗(q, x), y) defn. δ∗, y = zσ
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Pumping lemma as a game

Given a language L, to prove L is not a regular language:

1 Opponent picks n.

2 We choose a string x ∈ L with |x | ⩾ n.

3 Opponent picks u, v ,w with x = uvw , |uv | ⩽ n, |v | ⩾ 1.

4 If we can find m ⩾ 0 such that uvmw /∈ L, then we win.

If we can always win, then L does not fulfil the pumping lemma.

≈[VU Automata & Complexity] L3
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Unary language

Example

L = { ai
2
| i ⩾ 0 } is not accepted by FA

Proof. Suppose L is accepted by an FA of n states. Consider x = an
2
. Let

u, v ,w be such that x = uvw , |uv | ⩽ n and |v | ⩾ 1. Hence, u = ai , v = aj

and w = ak such that i + j + k = n2, i + j ⩽ n and j ⩾ 1.
Consider uv2w . Note that

|uv2w | = i + 2j + k = n2 + j > n2.

Moreover,
n2 + j ⩽ n2 + n < n2 + 2n + 1 = (n + 1)2.

Hence, the length of uv2w lies in between two consecutive squares, so it
cannot be a square.

[M] E 2.32
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Lagrange four-square theorem

L = { ai
2
| i ⩾ 0 }

Fun fact

L4 = {a}∗

Lagrange’s four-square theorem
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C programs

Let L be the set of legal C programs.
x = main(){{{...}}}

[M] E 2.33
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Not a characterization

L = {aibjc j | i ⩾ 1 and j ⩾ 0} ∪ {bjck | j ⩾ 0 and k ⩾ 0}

Suppose L is accepted by an FA of n states. Let x ∈ L be such that |x | ⩾ n.
If x = aibjc j with i ⩾ 1 and j ⩾ 0, take u = Λ, v = a and w the rest of
the string. Then |uv | = 1 ⩽ n and |v | = 1. Moreover,
uvmw = am+i−1bjc j ∈ L for all m ⩾ 0.
If x = bjck with j , k ⩾ 0, take u = Λ, v the first symbol of x , and w the
rest. Then |uv | = 1 ⩽ n, |v | = 1 and, for all m ⩾ 0, we see that uvmw is
either of the form bℓck or cℓ with some ℓ ⩾ 0, so in any case uvmw ∈ L.
So L satisfies the pumping lemma. However, L is not regular. We will
prove this later.
Note: L does not satisfy the generalized pumping lemma as discussed in
Exercise 2.24.

[M] E 2.39
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Decision problems

Decision problem: problem for which the answer is ‘yes’ or ‘no’:
Given . . . , is it true that . . . ?

Given an undirected graph G = (V ,E ),
does G contain a Hamiltonian path?

Given a list of integers x1, x2, . . . , xn,
is the list sorted?

decidable ⇐⇒ ∃ algorithm that decides
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Membership

M = (Q,Σ, δ, q0,A)
membership problem x ∈ L(M)?

Specific to M: Given x ∈ Σ∗, is x ∈ L(M)?

Arbitrary M: Given FA M with alphabet Σ, and x ∈ Σ∗, is x ∈ L(M)?

Decidable (easy)

[M] E 2.34
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Post correspondence problem

Given alphabet Σ with |Σ| > 1, and two lists of words x1, . . . , xn ∈ Σ∗ and
y1, . . . , yn ∈ Σ∗.

Does there exist a sequence of indices i1, . . . , im ∈ {1, . . . , n} such that
xi1xi2 · · · xim = yi1yi2 . . . yim?

Undecidable (see Computability).
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Accepted language

Theorem

The following two problems are decidable
1. Given an FA M, is L(M) nonempty?
2. Given an FA M, is L(M) infinite?

[M] E 2.34
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Lemma 1

Lemma

Let M be an FA with n states and let L = L(M).

L is nonempty,
if and only if L contains an element x with |x | < n
(at least one such element).

Proof. If L contains an element x with |x | < n, it is clear that L is
nonempty.
Conversely, suppose L is nonempty, and suppose for the sake of
contradiction that |x | ⩾ n for all x ∈ L. Consider arbitrary such x . By the
pumping lemma, there exist u, v , w such that x = uvw , |v | ⩾ 1 and
uw ∈ L. Note that |uw | < |x |. If |uw | < n, we are done; otherwise, we can
repeat the argument, applying the pumping lemma to uw , until we find a
string in L of length smaller than n.
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Lemma 2

Lemma

Let M be an FA with n states and let L = L(M).

L is infinite,
if and only if L contains an element x with |x | ⩾ n
(at least one such element).

cf. [M] Exercise 2.26

Proof. Suppose L is infinite. Note that {x ∈ L | |x | < n is finite, consisting
of at most

∑n
k=0 |Σ|

k words. Hence, L must indeed contain at least one x
with |x | ⩾ n.
Conversely, suppose that L contains an element x with |x | ⩾ n. By the
pumping lemma, there exist u, v , w such that x = uvw , |v | ⩾ 1, and
uvmw ∈ L for all m ⩾ 0. Hence, this gives an infinite sequence of words
that are elements of L.
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Lemma 3

Lemma

Let M be an FA with n states and let L = L(M).

L contains an element x with |x | ⩾ n (at least one such element)
if and only if L contains an element x with n ⩽ |x | < 2n
(at least one such element).

Proof. The reverse implication is trivial.
Suppose that L contains an element x with |x | ⩾ n, and suppose that
|x | ⩾ 2n By the pumping lemma, there exist u, v , w such that x = uvw ,
1 ⩽ |v | < n and uw ∈ L. Hence, n = 2n − n ⩽ |x |− n < |uw | < |x |. If
|uw | < 2n, we are done. Otherwise, we repeat the argument.
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Decision problems

Theorem

The following two problems are decidable
1. Given an FA M, is L(M) nonempty?
2. Given an FA M, is L(M) infinite?

Proof. To check whether L(M) is nonempty, we need to check whether
{x ∈ L | |x | < n} is nonempty, which is a finite amount of words to be
checked.
To check whether L(M) is infinite, we need to check whether
{x ∈ L | n ⩽ |x | < 2n} is nonempty, which is again a finite amount of words
to be checked.

[M] E 2.34
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Distinguishing strings

Definition

Let L be language over Σ, and let x , y ∈ Σ∗.
Then x , y are distinguishable wrt L (L-distinguishable),
if there exists z ∈ Σ∗ with

xz ∈ L and yz /∈ L or xz /∈ L and yz ∈ L
Such z distinguishes x and y wrt L.

Equivalent definition:
let L/x = { z ∈ Σ∗ | xz ∈ L }

x and y are L-distinguishable if L/x ̸= L/y .
Otherwise, they are L-indistinguishable.

The strings in a set S ⊆ Σ∗ are pairwise L-distinguishable, if for every pair
x , y of distinct strings in S , x and y are L-distinguishable.

Definition independent of FAs

[M] D 2.20
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x ends with aa

Example

L1 = { x ∈ {a, b}∗ | x ends with aa }

q0 q1 q2

a

b

a
b

a

b

S = {Λ, a, aa} are pairwise L1-distinguishable:
Λ · a = a ̸∈ L1, but a · a ∈ L1;
Λ ·Λ = Λ ̸∈ L1, but aa ·Λ = aa ∈ L1;
a ·Λ = a ̸∈ L1, but aa ·Λ = aa ∈ L1.
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Alternative

Example

L1 = { x ∈ {a, b}∗ | x ends with aa }

Using alternative definition:
L1/Λ = L1;
L1/a = L1 ∪ {a};
L1/aa = L1 ∪ {Λ, a}.

All unequal, so {Λ, a, aa} pairwise L1-distinguishable.
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Same state, same future

q0

δ∗(q0, x)

δ∗(q0, y)

x

y

δ∗(q0, xz1) = δ∗(q0, yz1)

z2

z3

z1
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Main theorem

Theorem

Suppose M = (Q,Σ, q0,A, δ) is an FA accepting L ⊆ Σ∗.

If x , y ∈ Σ∗ are L-distinguishable, then δ∗(q0, x) ̸= δ∗(q0, y).

For every n ⩾ 2, if there is a set of n pairwise L-distinguishable strings in
Σ∗, then Q must contain at least n states.

Hence, indeed: if δ∗(q0, x) = δ∗(q0, y), then x and y are not
L-distinguishable.

[M] Thm 2.21
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Constructing an FA

L = {aa, aab}∗{b}

q0

p

t u

rs

a b

b

a

b

a ba

a, b

a, b

[M] E 2.22
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