Automata Theory

Mark van den Bergh / Rudy van Vliet

Bachelor Informatica

Data Science and Artificial Intelligence
Universiteit Leiden

Fall 2024

Practice induction

Exercise 2.5.

Suppose $M=(Q,\Sigma,q_0,A,\delta)$ is an FA, q is an element of Q, and x and y are strings in Σ^* . Using structural induction on y, prove the formula

$$\delta^*(q, xy) = \delta^*(\delta^*(q, x), y)$$

Proof. Induction on |y|. If |y| = 0, i.e., $y = \Lambda$, then

$$\delta^*(q, xy) = \delta^*(q, x) = \delta(\delta^*(q, x), \Lambda) = \delta^*(\delta^*(q, x), \Lambda)$$

is (almost trivially) true. Next, suppose the statement is true for |y| < n and consider y such that $y = z\sigma$, |y| = n. Then

$$\begin{split} \delta^*(q,xy) &= \delta(\delta^*(q,xz),\sigma) & \text{defn. } \delta^*,y = z\sigma \\ &= \delta(\delta^*(\delta^*(q,x),z),\sigma) & \text{ind. hypothesis} \\ &= \delta^*(\delta^*(q,x),y) & \text{defn. } \delta^*,y = z\sigma \end{split}$$

4 ≣ →

Pumping lemma as a game

Given a language L, to prove L is not a regular language:

- Opponent picks n.
- ② We choose a string $x \in L$ with $|x| \ge n$.
- 3 Opponent picks u, v, w with $x = uvw, |uv| \le n, |v| \ge 1$.
- 4 If we can find $m \ge 0$ such that $uv^m w \notin L$, then we win.

If we can always win, then L does not fulfil the pumping lemma.

≈[VU Automata & Complexity] L3

Example

$$L = \{ a^{i^2} \mid i \geqslant 0 \}$$
 is not accepted by FA

Proof. Suppose L is accepted by an FA of n states. Consider $x=a^{n^2}$. Let u,v,w be such that $x=uvw, |uv|\leqslant n$ and $|v|\geqslant 1$. Hence, $u=a^i, v=a^j$ and $w=a^k$ such that $i+j+k=n^2, i+j\leqslant n$ and $j\geqslant 1$. Consider uv^2w . Note that

$$|uv^2w| = i + 2j + k = n^2 + j > n^2.$$

Moreover,

$$n^2 + i \le n^2 + n < n^2 + 2n + 1 = (n+1)^2$$
.

Hence, the length of uv^2w lies in between two consecutive squares, so it cannot be a square.

Lagrange four-square theorem

$$L = \{ a^{i^2} \mid i \geqslant 0 \}$$

Fun fact

 $L^4 = \{a\}^*$

Lagrange's four-square theorem

C programs

Let L be the set of legal C programs.

$$x = \min()\{\{\{...\}\}\}$$

Not a characterization

$$L = \{a^i b^j c^j \mid i \geqslant 1 \text{ and } j \geqslant 0\} \cup \{b^j c^k \mid j \geqslant 0 \text{ and } k \geqslant 0\}$$

Suppose L is accepted by an FA of n states. Let $x \in L$ be such that $|x| \ge n$. If $x = a^i b^j c^j$ with $i \ge 1$ and $j \ge 0$, take $u = \Lambda$, v = a and w the rest of the string. Then $|uv| = 1 \le n$ and |v| = 1. Moreover, $uv^m w = a^{m+i-1} b^j c^j \in L$ for all $m \ge 0$.

If $x=b^jc^k$ with $j,k\geqslant 0$, take $u=\Lambda,v$ the first symbol of x, and w the rest. Then $|uv|=1\leqslant n,\,|v|=1$ and, for all $m\geqslant 0$, we see that uv^mw is either of the form b^\ellc^k or c^ℓ with some $\ell\geqslant 0$, so in any case $uv^mw\in L$. So L satisfies the pumping lemma. However, L is not regular. We will prove this later.

Note: *L* does not satisfy the generalized pumping lemma as discussed in Exercise 2.24.

Decision problem: problem for which the answer is 'yes' or 'no': Given is it true that ...?

Given an undirected graph G = (V, E), does G contain a Hamiltonian path? Given a list of integers x_1, x_2, \ldots, x_n , is the list sorted?

 $decidable \iff \exists$ algorithm that decides

$$M = (Q, \Sigma, \delta, q_0, A)$$

membership problem $x \in L(M)$?

Specific to M: Given $x \in \Sigma^*$, is $x \in L(M)$?

Arbitrary M: Given FA M with alphabet Σ , and $x \in \Sigma^*$, is $x \in L(M)$?

Decidable (easy)

Post correspondence problem

Given alphabet Σ with $|\Sigma| > 1$, and two lists of words $x_1, \ldots, x_n \in \Sigma^*$ and $y_1, \ldots, y_n \in \Sigma^*$.

Does there exist a sequence of indices $i_1, \ldots, i_m \in \{1, \ldots, n\}$ such that $x_{i_1} x_{i_2} \cdots x_{i_m} = y_{i_1} y_{i_2} \ldots y_{i_m}$?

Undecidable (see Computability).

Accepted language

Theorem

The following two problems are decidable

- 1. Given an FA M, is L(M) nonempty?
- 2. Given an FA M, is L(M) infinite?

< ∃ →

Lemma

Let M be an FA with n states and let L = L(M).

L is nonempty, if and only if L contains an element x with |x| < n (at least one such element).

Proof. If L contains an element x with |x| < n, it is clear that L is nonempty.

Conversely, suppose L is nonempty, and suppose for the sake of contradiction that $|x| \geqslant n$ for all $x \in L$. Consider arbitrary such x. By the pumping lemma, there exist u, v, w such that x = uvw, $|v| \geqslant 1$ and $uw \in L$. Note that |uw| < |x|. If |uw| < n, we are done; otherwise, we can repeat the argument, applying the pumping lemma to uw, until we find a string in L of length smaller than n.

Lemma

Let M be an FA with n states and let L = L(M).

L is infinite, if and only if L contains an element x with $|x| \ge n$ (at least one such element).

cf. [M] Exercise 2.26

Proof. Suppose L is infinite. Note that $\{x \in L \mid |x| < n \text{ is finite, consisting of at most } \sum_{k=0}^{n} |\Sigma|^k \text{ words. Hence, } L \text{ must indeed contain at least one } x \text{ with } |x| \ge n.$

Conversely, suppose that L contains an element x with $|x| \ge n$. By the pumping lemma, there exist u, v, w such that x = uvw, $|v| \ge 1$, and $uv^m w \in L$ for all $m \ge 0$. Hence, this gives an infinite sequence of words that are elements of L.

Lemma

Let M be an FA with n states and let L = L(M).

L contains an element x with $|x| \ge n$ (at least one such element) if and only if L contains an element x with $n \le |x| < 2n$ (at least one such element).

Proof. The reverse implication is trivial.

Suppose that L contains an element x with $|x| \geqslant n$, and suppose that $|x| \geqslant 2n$ By the pumping lemma, there exist u, v, w such that x = uvw, $1 \leqslant |v| < n$ and $uw \in L$. Hence, $n = 2n - n \leqslant |x| - n < |uw| < |x|$. If |uw| < 2n, we are done. Otherwise, we repeat the argument.

Theorem

The following two problems are decidable

- 1. Given an FA M, is L(M) nonempty?
- 2. Given an FA M, is L(M) infinite?

Proof. To check whether L(M) is nonempty, we need to check whether $\{x \in L \mid |x| < n\}$ is nonempty, which is a finite amount of words to be checked.

To check whether L(M) is infinite, we need to check whether $\{x \in L \mid n \leq |x| < 2n\}$ is nonempty, which is again a finite amount of words to be checked.

Definition

Let L be language over Σ , and let $x, y \in \Sigma^*$.

Then x, y are distinguishable wrt L (L-distinguishable),

if there exists $z \in \Sigma^*$ with

$$xz \in L$$
 and $yz \notin L$ or $xz \notin L$ and $yz \in L$

Such z distinguishes x and y wrt L.

Equivalent definition:

let
$$L/x = \{ z \in \Sigma^* \mid xz \in L \}$$

x and y are L-distinguishable if $L/x \neq L/y$.

Otherwise, they are *L-indistinguishable*.

The strings in a set $S \subseteq \Sigma^*$ are *pairwise L-distinguishable*, if for every pair x, y of distinct strings in S, x and y are L-distinguishable.

Definition independent of FAs

[M] D 2.20

Example

$$L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow q_0$$

$$\downarrow b$$

$$\downarrow q_1$$

$$\downarrow a$$

$$\downarrow q_2$$

$$S = \{\Lambda, a, aa\}$$
 are pairwise L_1 -distinguishable:

$$\Lambda \cdot a = a \notin L_1$$
, but $a \cdot a \in L_1$;

$$\Lambda \cdot \Lambda = \Lambda \not\in L_1$$
, but $aa \cdot \Lambda = aa \in L_1$;

$$a \cdot \Lambda = a \notin L_1$$
, but $aa \cdot \Lambda = aa \in L_1$.

Example

$$L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$$

Using alternative definition:

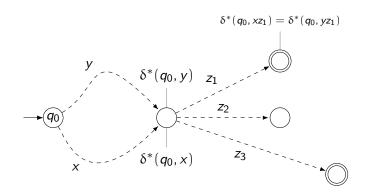
$$L_1/\Lambda = L_1;$$

$$L_1/a = L_1 \cup \{a\};$$

$$L_1/aa = L_1 \cup \{\Lambda, a\}.$$

All unequal, so $\{\Lambda, a, aa\}$ pairwise L_1 -distinguishable.

Same state, same future



Theorem

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an FA accepting $L \subseteq \Sigma^*$.

If $x, y \in \Sigma^*$ are L-distinguishable, then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$.

For every $n \geqslant 2$, if there is a set of n pairwise L-distinguishable strings in Σ^* , then Q must contain at least n states.

Hence, indeed: if $\delta^*(q_0, x) = \delta^*(q_0, y)$, then x and y are not L-distinguishable.

[M] Thm 2.21

$$L = \{aa, aab\}^*\{b\}$$

