[Automata Theory](https://liacs.leidenuniv.nl/~vlietrvan1/automata/)

Mark van den Bergh / Rudy van Vliet

Bachelor Informatica Data Science and Artificial Intelligence [Universiteit Leiden](https://www.universiteitleiden.nl/)

Fall 2024

Formalism

Definition (FA)

[deterministic] finite automaton 5-tuple $M = (Q, \Sigma, q_0, A, \delta)$, $- Q$ finite set states: $-\Sigma$ finite *input alphabet*; $-q_0 \in Q$ initial state; $-A \subseteq Q$ accepting states; $-\delta: Q \times \Sigma \rightarrow Q$ transition function.

[M] D 2.11 Finite automaton [L] D 2.1 Deterministic finite accepter, has 'final' states

Example

[M] E. 2.1

Extended transition function

FA
$$
M = (Q, \Sigma, q_0, A, \delta)
$$

Definition

extended transition function $\delta^*: Q \times \Sigma^* \to Q$, such that $- \delta^*(q, \Lambda) = q$ for $q \in Q$ $-\delta^*(q, y\sigma) = \delta(\delta^*(q, y), \sigma) \text{ for } q \in Q, y \in \Sigma^*, \sigma \in \Sigma$

[M] D 2.12 [L] p.40/1

Theorem

 $q = \delta^*(p, w)$ iff there is a path in [the transition graph of] M from p to q with label w.

[L] Th 2.1

Extended transition function

$$
\delta^*(q_0, \Lambda) = q_0
$$

\n
$$
\delta^*(q_0, a) = \delta^*(q_0, \Lambda a) = \delta(\delta^*(q_0, \Lambda), a) = \delta(q_0, a) = q_1
$$

\n
$$
\delta^*(q_0, aa) = \delta(\delta^*(q_0, a), a) = \delta(q_1, a) = q_2
$$

\n
$$
\delta^*(q_0, aab) = \delta(\delta^*(q_0, aa), b) = \delta(q_2, b) = q_0
$$

\n
$$
\delta^*(q_0, aabb) = \delta(\delta^*(q_0, aab), b) = \delta(q_0, b) = q_0
$$

[Automata Theory](#page-0-0) 5 / 23

 $\leftarrow \equiv$)

Definition

Let $M = (Q, \Sigma, q_0, A, \delta)$ be an FA, and let $x \in \Sigma^*$. The string x is accepted by M if $\delta^*(q_0, x) \in A$. The *language accepted* by $M = (Q, \Sigma, q_0, A, \delta)$ is the set $L(M) = \{ x \in \Sigma^* \mid x \text{ is accepted by } M \}$

[M] D 2.14 [L] D 2.2

Complement, construction

Construction

FA
$$
M = (Q, \Sigma, q_0, A, \delta)
$$
,

let $M^c = (Q, \Sigma, q_0, Q - A, \delta)$

Theorem

 $L(M^c) = \Sigma^* - L(M)$

Proof. Suppose $x \in L(M^c)$. Then x is accepted by M^c , so it holds that $\delta^*(q_0, x) \in Q - A$. Hence, x is not accepted by M, so $x \notin L(M)$, so $x \in \Sigma^* - L(M)$. Suppose $x \in \Sigma^* - L(M)$. Then $x \notin L(M)$, so x is not accepted by M. Hence, $\delta^*(q_0, x) \not\in A$, so $\delta^*(q_0, x) \in Q - A$, so x is accepted by M^c , that is, $x \in L(M^c)$.

 $\leftarrow \equiv +$

Complement example

Combining languages

FA
$$
M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)
$$
 $i = 1, 2$

Product construction

construct FA $M = (Q, \Sigma, q_0, A, \delta)$ such that

$$
- Q = Q_1 \times Q_2
$$

\n
$$
- q_0 = (q_1, q_2)
$$

\n
$$
- \delta ((p, q), \sigma) = (\delta_1(p, \sigma), \delta_2(q, \sigma))
$$

\n
$$
- A \text{ as needed}
$$

Theorem (2.15 Parallel simulation)

 $-A = \{(p, q) | p \in A_1 \text{ or } q \in A_2\},\$ then $L(M) = L(M_1) \cup L(M_2)$ $-A = \{ (p, q) \mid p \in A_1 \text{ and } q \in A_2 \}, \text{ then } L(M) = L(M_1) \cap L(M_2)$ $-A = \{ (p, q) \mid p \in A_1 \text{ and } q \notin A_2 \}, \text{ then } L(M) = L(M_1) - L(M_2)$

[M] Sect 2.2

[Automata Theory](#page-0-0) [Boolean operations](#page-6-0) 9 / 23

Example

Might not be optimal

Even number of a and ending with b

Exercise 2.11.

Use induction to show that for every $x \in \Sigma^*$ and every $(p, q) \in Q$, $\delta^*((p, q), x) = (\delta_1^*(p, x), \delta_2^*(q, x))$

Proof. It clearly holds that

$$
\delta^*((p,q),\Lambda)=(p,q)=(\delta_1^*(p,\Lambda),\delta_2^*(q,\Lambda)).
$$

Next, suppose the statement holds for all x with $|x| < n$ and consider some $x = y\sigma$ of length *n*. Then

$$
\delta^*((p, q), x) = \delta(\delta^*((p, q), y), \sigma) \qquad \text{defn. } \delta^*, x = y\sigma
$$

\n
$$
= \delta((\delta_1^*(p, y), \delta_2^*(q, y)), \sigma) \qquad \text{ind. hypothesis}
$$

\n
$$
= (\delta_1(\delta_1^*(p, y), \sigma), \delta_2(\delta_2^*(q, y), \sigma)) \qquad \text{defn. product FA}
$$

\n
$$
= (\delta_1^*(p, y\sigma), \delta_2^*(q, y\sigma)) \qquad \text{defn. } \delta_1^*, \delta_2^*
$$

\n
$$
= (\delta_1^*(p, x), \delta_2^*(p, x)). \qquad x = y\sigma
$$

Example: intersection 'and' (product construction)

[M] E 2.16

Example: union, contain either ab or bba

[M] E. 2.18, see also \rightarrow [subset construction](#page-0-1)

[Automata Theory](#page-0-0) **Boolean operations Boolean operations 14** / 23

 $\leftarrow \equiv +$

Another example

 $L = \{ w \in \{a, b\}^* \mid w \text{ starts and ends with an } a, \text{ and } |w| \text{ is even } \}$

 $\leftarrow \equiv +$

Regular languages

Theorem

REG is closed under complement, union and intersection.

Pumping lemma

[M] Fig. 2.28

[Automata Theory](#page-0-0) **Pumping lemma for regular languages** 17 / 23

 $\leftarrow \Xi \rightarrow$

Regular language is language accepted by an FA.

```
Theorem
```
Suppose L is a language over the alphabet $Σ$. If L is accepted by a finite automaton M, and if n is the number of states of M, then

```
\forall for every x \in Lsatisfying |x| \geq n
```
 \exists there are three strings u, v, and w, such that $x = uvw$ and the following three conditions are true: (1) |uv| $\leq n$, $(2) |v| \geq 1$

 \forall and (3) for all $m \geqslant 0$, uv m w belongs to L

[M] Thm. 2.29

In other words:

Theorem

- For every regular language L
- there exists a constant $n \geq 1$ such that
- \forall for every $x \in L$ with $|x| \ge n$

 \exists there exists a decomposition $x = uvw$ with (1) $|uv| \le n$, and (2) $|v| \geq 1$ such that

 \forall (3) for all $m \geqslant 0$, uv $w \in L$

if
$$
L = L(M)
$$
 then $n = |Q|$.

[M] Thm. 2.29

In other words:

Theorem

- If L is a regular language, then there exists a constant $n \geqslant 1$ such that \forall for every $x \in L$ with $|x| \ge n$ \exists there exists a decomposition $x = uvw$ with (1) $|uv| \leq n$,
	- and (2) $|v| \geq 1$ such that
- \forall (3) for all $m \geqslant 0$, uv $w \in L$

if $L = L(M)$ then $n = |Q|$.

Introduction to Logic: $p \rightarrow q \iff \neg q \rightarrow \neg p$

[M] Thm. 2.29

 $\leftarrow \equiv +$

Example

 $L = AnBn = \{a^n b^n \mid n \geq 0\}$ is not accepted by FA.

[M] E 2.30

Proof: by contradiction. Assume that L is accepted by FA with *n* states. Take $x = a^n b^n$. Then $x \in L$, and $|x| = 2n \ge n$.

Thus there exists a decomposition $x = uvw$ such that $|uv| \leq n$ with v nonempty, and $uv^mw \in L$ for every m.

Whatever this decomposition is, v consists of a's only. Consider $m = 0$. Deleting v from the string x will delete a number of a's. So uv^0w is of the form $a^{n'}b^n$ with $n' < n$.

This string is not in L; a contradiction. ($m \geq 2$ would also yield contradiction)

So, L is not regular.

Applying the pumping lemma

Example

 $L = AeqB = {x \in {a, b}}^* \mid n_a(x) = n_b(x)$ is not accepted by FA.

[M] E 2.30

Exactly the same argument can be used (verbatim) to prove that $L = AeqB$ is not regular.

We can also apply closure properties of REG to see that AeqB is not regular, as follows.

Assume AeqB is regular. Then also $AnBn = AeqB ∩ a^*b^*$ is regular, as regular languages are closed under intersection. This is a contradiction, as we just have argued that AnBn is not regular.

Thus, also AeqB is not regular.