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Formalism

Definition (FA)

[deterministic] finite automaton 5-tuple M = (Q,Σ, q0,A, δ),
– Q finite set states;
– Σ finite input alphabet;
– q0 ∈ Q initial state;
– A ⊆ Q accepting states;
– δ : Q × Σ → Q transition function.

[M] D 2.11 Finite automaton

[L] D 2.1 Deterministic finite accepter, has ‘final’ states
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Example

Example

L1 = { x ∈ {a, b}∗ | x ends with aa }

q0 q1 q2

a

b

a
b

a

b

Q = {q0, q1, q2}
Σ = {a, b}
q0 initial state
A = {q2}

δ a b

q0 q1 q0
q1 q2 q0
q2 q2 q0

[M] E. 2.1
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Extended transition function

FA M = (Q,Σ, q0,A, δ)

Definition

extended transition function δ∗ : Q × Σ∗ → Q, such that
– δ∗(q,Λ) = q for q ∈ Q
– δ∗(q, yσ) = δ( δ∗(q, y),σ ) for q ∈ Q, y ∈ Σ∗,σ ∈ Σ

[M] D 2.12 [L] p.40/1

Theorem

q = δ∗(p,w) iff there is a path in [the transition graph of] M from p to q
with label w .

[L] Th 2.1

Automata Theory FA definition 4 / 23



Extended transition function

q0 q1 q2

a

b

a
b

a

b

q0

δ∗(q0,Λ)

q1

δ∗(q0, a)

q2

δ∗(q0, aa)

q0

δ∗(q0, aab)

q0

δ∗(q0, aabb)

a a b b

δ∗(q0, aabb) = q0 :

δ∗(q0,Λ) = q0

δ∗(q0, a) = δ∗(q0,Λ a) = δ(δ∗(q0,Λ), a) = δ(q0, a) = q1

δ∗(q0, aa) = δ(δ∗(q0, a), a) = δ(q1, a) = q2

δ∗(q0, aab) = δ(δ∗(q0, aa), b) = δ(q2, b) = q0

δ∗(q0, aabb) = δ(δ∗(q0, aab), b) = δ(q0, b) = q0
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Language accepted by FA

Definition

Let M = (Q,Σ, q0,A, δ) be an FA, and let x ∈ Σ∗. The string x is
accepted by M if δ∗(q0, x) ∈ A.
The language accepted by M = (Q,Σ, q0,A, δ) is the set
L(M) = { x ∈ Σ∗ | x is accepted by M }

[M] D 2.14 [L] D 2.2
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Complement, construction

Construction

FA M = (Q,Σ, q0,A, δ),

let Mc = (Q,Σ, q0,Q − A, δ)

Theorem

L(Mc) = Σ∗ − L(M)

Proof. Suppose x ∈ L(Mc). Then x is accepted by Mc , so it holds that
δ∗(q0, x) ∈ Q − A. Hence, x is not accepted by M, so x ̸∈ L(M), so
x ∈ Σ∗ − L(M).
Suppose x ∈ Σ∗ − L(M). Then x ̸∈ L(M), so x is not accepted by M.
Hence, δ∗(q0, x) ̸∈ A, so δ∗(q0, x) ∈ Q − A, so x is accepted by Mc , that
is, x ∈ L(Mc).
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Complement example

Example

L = { x ∈ {a, b}∗ | x ends with b and does not contain aa }

q0 q1

last a

q2

seen aa

q3

last b

a

b

a

b

a, b

a

b

q0 q1 q2

q3

a

b

a

b

a, b

a

b

¬(P ∧ Q) = ¬P ∨ ¬Q

Lc = { x ∈ {a, b}∗ | x does not end with b or contains aa }
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Combining languages

FA Mi = (Qi ,Σ, qi ,Ai , δi ) i = 1, 2

Product construction

construct FA M = (Q,Σ, q0,A, δ) such that
– Q = Q1 × Q2

– q0 = (q1, q2)
– δ( (p, q),σ) = ( δ1(p,σ), δ2(q,σ) )
– A as needed

Theorem (2.15 Parallel simulation)

– A = {(p, q) | p ∈ A1 or q ∈ A2}, then L(M) = L(M1) ∪ L(M2)
– A = {(p, q) | p ∈ A1 and q ∈ A2}, then L(M) = L(M1) ∩ L(M2)
– A = {(p, q) | p ∈ A1 and q /∈ A2}, then L(M) = L(M1) − L(M2)

[M] Sect 2.2
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Example

Example (Even number of a, and ending with b)

e o

odd a
a

b

a

b

a b

last b
b

a

a

b

ea

oa

eb

ob
a

b a

b

a

b

b

a
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Might not be optimal

Even number of a and ending with b

ea

oa

eb

ob
a

b a

b

a

b

b

a

ea

o

odd a
any last letter

eb

a

b a b

a

b
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Proof

Exercise 2.11.
Use induction to show that for every x ∈ Σ∗ and every (p, q) ∈ Q,
δ∗((p, q), x) = (δ∗1(p, x), δ

∗
2(q, x))

Proof. It clearly holds that

δ∗((p, q),Λ) = (p, q) = (δ∗1(p,Λ), δ∗2(q,Λ)).

Next, suppose the statement holds for all x with |x | < n and consider some
x = yσ of length n. Then

δ∗((p, q), x) = δ(δ∗((p, q), y),σ) defn. δ∗, x = yσ

= δ((δ∗1(p, y), δ
∗
2(q, y)),σ) ind. hypothesis

= (δ1(δ
∗
1(p, y),σ), δ2(δ

∗
2(q, y),σ)) defn. product FA

= (δ∗1(p, yσ), δ
∗
2(q, yσ)) defn. δ∗1 , δ

∗
2

= (δ∗1(p, x), δ
∗
2(p, x)). x = yσ
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Example: intersection ‘and’ (product construction)

not substring aa

A B C

a

b

a
b

a, b

P Q R

b

a
b

a

a

b

AP BP CP

AQ BQ CQ

AR BR CR

a

b
a

b

a

b

a

b

a

b

a
b

a

ba

b

b

a

ends with ab

[M] E 2.16
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Example: union, contain either ab or bba

1 2 3
a

b

b

a a, b

p q r s

b

a

b
a

a

b a, b

1p

2p

1q

3q3p 3r 3s

1r

2s

a

b

b
a

a
b

a

b
b

a
a

b

a, b

a

b

b

a

[M] E. 2.18, see also ↪→subset construction

Automata Theory Boolean operations 14 / 23



Another example

L = { w ∈ {a, b}∗ | w starts and ends with an a, and |w | is even }

Λ- a b
ab

a, b

b

a

a

b

e o

a, b

a, b

ao be

boae

b

a b
a

a

ba
b

-o-e λe

a, b

a, b
b a
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Regular languages

Theorem

REG is closed under complement, union and intersection.
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Pumping lemma

q0
u

v

w

[M] Fig. 2.28
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Pumping lemma for regular languages

Regular language is language accepted by an FA.

Theorem

Suppose L is a language over the alphabet Σ. If L is accepted by a finite
automaton M, and if n is the number of states of M, then
∀ for every x ∈ L

satisfying |x | ⩾ n
∃ there are three strings u, v , and w ,

such that x = uvw and the following three conditions are true:
(1) |uv | ⩽ n,
(2) |v | ⩾ 1

∀ and (3) for all m ⩾ 0, uvmw belongs to L

[M] Thm. 2.29
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Pumping lemma for regular languages

In other words:

Theorem

∀ For every regular language L
∃ there exists a constant n ⩾ 1

such that
∀ for every x ∈ L

with |x | ⩾ n
∃ there exists a decomposition x = uvw

with (1) |uv | ⩽ n,
and (2) |v | ⩾ 1
such that

∀ (3) for all m ⩾ 0, uvmw ∈ L

if L = L(M) then n = |Q |.

[M] Thm. 2.29
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Pumping lemma for regular languages

In other words:

Theorem

If L is a regular language, then
∃ there exists a constant n ⩾ 1

such that
∀ for every x ∈ L

with |x | ⩾ n
∃ there exists a decomposition x = uvw

with (1) |uv | ⩽ n,
and (2) |v | ⩾ 1
such that

∀ (3) for all m ⩾ 0, uvmw ∈ L

if L = L(M) then n = |Q |.

Introduction to Logic: p → q ⇐⇒ ¬q → ¬p
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Pumping lemma for regular languages

Theorem

If
∀ for every n ⩾ 1
∃ there exists x ∈ L

with |x | ⩾ n
such that

∀ for every decomposition x = uvw
with (1) |uv | ⩽ n,
and (2) |v | ⩾ 1

∃ (3) there exists m ⩾ 0,
such that
uvmw /∈ L

then L is not a regular language.

[M] Thm. 2.29
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Applying the pumping lemma

Example

L = AnBn = {anbn | n ⩾ 0} is not accepted by FA.

[M] E 2.30

Proof: by contradiction. Assume that L is accepted by FA with n states.
Take x = anbn. Then x ∈ L, and |x | = 2n ⩾ n.
Thus there exists a decomposition x = uvw such that |uv | ⩽ n with v
nonempty, and uvmw ∈ L for every m.
Whatever this decomposition is, v consists of a’s only. Consider m = 0.
Deleting v from the string x will delete a number of a’s. So uv0w is of the
form an

′
bn with n ′ < n.

This string is not in L; a contradiction. (m ⩾ 2 would also yield
contradiction)
So, L is not regular.
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Applying the pumping lemma

Example

L = AeqB = {x ∈ {a, b}∗ | na(x) = nb(x) } is not accepted by FA.

[M] E 2.30

Exactly the same argument can be used (verbatim) to prove that
L = AeqB is not regular.

We can also apply closure properties of REG to see that AeqB is not
regular, as follows.

Assume AeqB is regular. Then also AnBn = AeqB ∩ a∗b∗ is regular, as
regular languages are closed under intersection.
This is a contradiction, as we just have argued that AnBn is not regular.
Thus, also AeqB is not regular.
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