Automata Theory

Mark van den Bergh / Rudy van Vliet

Bachelor Informatica Data Science and Artificial Intelligence Universiteit Leiden

Fall 2024

Formalism

Definition (FA)

[deterministic] finite automaton	5-tuple	$M = (Q, \Sigma, q_0, A, \delta),$
-Q finite set <i>states</i> ;		
$-\Sigma$ finite <i>input alphabet</i> ;		
$-q_0 \in Q$ initial state;		
$-A \subseteq Q$ accepting states;		
$-\delta: Q imes \Sigma o Q$ transition fur	nction.	

[M] D 2.11 Finite automaton

[L] D 2.1 Deterministic finite accepter, has 'final' states

Example

[M] E. 2.1

Extended transition function

fa
$$M = (Q, \Sigma, q_0, A, \delta)$$

Definition

extended transition function $\delta^* : Q \times \Sigma^* \to Q$, such that $-\delta^*(q, \Lambda) = q$ for $q \in Q$

$$- \, \delta^*(q, y\sigma) = \delta(\,\, \delta^*(q, y), \sigma\,\,) \quad ext{ for } q \in Q, y \in \Sigma^*, \sigma \in \Sigma$$

[M] D 2.12 [L] p.40/1

Theorem

 $q = \delta^*(p, w)$ iff there is a path in [the transition graph of] M from p to q with label w.

[L] Th 2.1

Extended transition function

$$\begin{split} \delta^*(q_0, \Lambda) &= q_0 \\ \delta^*(q_0, a) &= \delta^*(q_0, \Lambda a) = \delta(\delta^*(q_0, \Lambda), a) = \delta(q_0, a) = q_1 \\ \delta^*(q_0, aa) &= \delta(\delta^*(q_0, a), a) = \delta(q_1, a) = q_2 \\ \delta^*(q_0, aab) &= \delta(\delta^*(q_0, aa), b) = \delta(q_2, b) = q_0 \\ \delta^*(q_0, aabb) &= \delta(\delta^*(q_0, aab), b) = \delta(q_0, b) = q_0 \end{split}$$

Automata Theory

< ≣ → 5 / 23

Definition

Let $M = (Q, \Sigma, q_0, A, \delta)$ be an FA, and let $x \in \Sigma^*$. The string x is *accepted* by M if $\delta^*(q_0, x) \in A$. The *language accepted* by $M = (Q, \Sigma, q_0, A, \delta)$ is the set $L(M) = \{ x \in \Sigma^* \mid x \text{ is accepted by } M \}$

[M] D 2.14 [L] D 2.2

Complement, construction

Construction

FA
$$M = (Q, \Sigma, q_0, A, \delta)$$
,

let $M^c = (Q, \Sigma, q_0, Q - A, \delta)$

Theorem

 $L(M^c) = \Sigma^* - L(M)$

Proof. Suppose $x \in L(M^c)$. Then x is accepted by M^c , so it holds that $\delta^*(q_0, x) \in Q - A$. Hence, x is not accepted by M, so $x \notin L(M)$, so $x \in \Sigma^* - L(M)$. Suppose $x \in \Sigma^* - L(M)$. Then $x \notin L(M)$, so x is not accepted by M. Hence, $\delta^*(q_0, x) \notin A$, so $\delta^*(q_0, x) \in Q - A$, so x is accepted by M^c , that is, $x \in L(M^c)$.

< ∃⇒

Complement example

Combining languages

FA
$$M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)$$
 $i = 1, 2$

Product construction

construct FA $M = (Q, \Sigma, q_0, A, \delta)$ such that

$$-Q = Q_1 \times Q_2$$

$$-q_0 = (q_1, q_2)$$

$$-\delta((p, q), \sigma) = (\delta_1(p, \sigma), \delta_2(q, \sigma))$$

$$-A \text{ as needed}$$

Theorem (2.15 Parallel simulation)

$$-A = \{(p, q) \mid p \in A_1 \text{ or } q \in A_2\}, \text{ then } L(M) = L(M_1) \cup L(M_2)$$

 $-A = \{(p, q) \mid p \in A_1 \text{ and } q \in A_2\}, \text{ then } L(M) = L(M_1) \cap L(M_2)$
 $-A = \{(p, q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2)$

[M] Sect 2.2

Example

Might not be optimal

Even number of a and ending with b

Proof

Exercise 2.11.

Use induction to show that for every $x \in \Sigma^*$ and every $(p, q) \in Q$, $\delta^*((p, q), x) = (\delta_1^*(p, x), \delta_2^*(q, x))$

Proof. It clearly holds that

$$\delta^*((\boldsymbol{p},\boldsymbol{q}),\boldsymbol{\Lambda}) = (\boldsymbol{p},\boldsymbol{q}) = (\delta^*_1(\boldsymbol{p},\boldsymbol{\Lambda}),\delta^*_2(\boldsymbol{q},\boldsymbol{\Lambda})).$$

Next, suppose the statement holds for all x with |x| < n and consider some $x = y\sigma$ of length n. Then

$$\begin{split} \delta^*((p,q),x) &= \delta(\delta^*((p,q),y),\sigma) & \text{defn. } \delta^*, x = y\sigma \\ &= \delta((\delta_1^*(p,y),\delta_2^*(q,y)),\sigma) & \text{ind. hypothesis} \\ &= (\delta_1(\delta_1^*(p,y),\sigma),\delta_2(\delta_2^*(q,y),\sigma)) & \text{defn. product FA} \\ &= (\delta_1^*(p,y\sigma),\delta_2^*(q,y\sigma)) & \text{defn. } \delta_1^*,\delta_2^* \\ &= (\delta_1^*(p,x),\delta_2^*(p,x)). & x = y\sigma \end{split}$$

Example: intersection 'and' (product construction)

[M] E 2.16

Example: union, contain either ab or bba

[M] E. 2.18, see also \hookrightarrow subset construction

Automata Theory

Boolean operations

< ≣ → 14 / 23

Another example

 $L = \{ w \in \{a, b\}^* \mid w \text{ starts and ends with an } a, and |w| \text{ is even } \}$

Regular languages

Theorem

REG is closed under complement, union and intersection.

Pumping lemma

[M] Fig. 2.28

Automata Theory

Pumping lemma for regular languages

< ≞ →

Regular language is language accepted by an FA.

```
Theorem
```

Suppose L is a language over the alphabet Σ . If L is accepted by a finite automaton M, and if n is the number of states of M, then

```
\forall \quad \text{for every } x \in L \\ \text{satisfying } |x| \ge n \\ \end{cases}
```

 $\exists there are three strings u, v, and w, \\ such that x = uvw and the following three conditions are true:$ $(1) <math>|uv| \leq n$, (2) $|v| \geq 1$

 \forall and (3) for all $m \ge 0$, $uv^m w$ belongs to L

[M] Thm. 2.29

Pumping lemma for regular languages

In other words:

Theorem

- \forall For every regular language L
- $\exists there exists a constant n \ge 1$
such that
- $\forall \quad \text{for every } x \in L \\ \text{with } |x| \ge n \\ \end{cases}$

∃ there exists a decomposition x = uvwwith (1) $|uv| \le n$, and (2) $|v| \ge 1$ such that

 \forall (3) for all $m \ge 0$, $uv^m w \in L$

if
$$L = L(M)$$
 then $n = |Q|$.

[M] Thm. 2.29

Pumping lemma for regular languages

In other words:

Theorem

- $\begin{array}{l} \mbox{ If } L \mbox{ is a regular language, then} \\ \exists \ \ there \ exists \ a \ constant \ n \geqslant 1 \\ \ \ such \ that \\ \forall \ \ for \ every \ x \in L \\ \ \ with \ |x| \geqslant n \\ \exists \ \ there \ exists \ a \ decomposition \ x = uvw \\ \ \ with \ (1) \ |uv| \leqslant n, \\ \ \ and \ (2) \ |v| \geqslant 1 \\ \ \ such \ that \end{array}$
- \forall (3) for all $m \ge 0$, $uv^m w \in L$

if L = L(M) then n = |Q|.

Introduction to Logic: $p
ightarrow q \iff \neg q
ightarrow \neg p$

< ≣ ▶20 / 23

Pumping lemma for regular languages

[M] Thm. 2.29

Example

 $L = AnBn = \{a^n b^n \mid n \ge 0\}$ is not accepted by FA.

[M] E 2.30

Proof: by contradiction. Assume that L is accepted by FA with n states. Take $x = a^n b^n$. Then $x \in L$, and $|x| = 2n \ge n$.

Thus there exists a decomposition x = uvw such that $|uv| \leq n$ with v nonempty, and $uv^m w \in L$ for every m.

Whatever this decomposition is, v consists of a's only. Consider m = 0. Deleting v from the string x will delete a number of a's. So uv^0w is of the form $a^{n'}b^n$ with n' < n.

This string is not in L; a contradiction. $(m \ge 2 \text{ would also yield contradiction})$

So, L is not regular.

Applying the pumping lemma

Example

 $L = AeqB = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$ is not accepted by FA.

[M] E 2.30

Exactly the same argument can be used (verbatim) to prove that L = AeqB is not regular.

We can also apply closure properties of REG to see that AeqB is not regular, as follows.

Assume AeqB is regular. Then also $AnBn = AeqB \cap a^*b^*$ is regular, as regular languages are closed under intersection. This is a contradiction, as we just have argued that AnBn is not regular.

Thus, also AeqB is not regular.