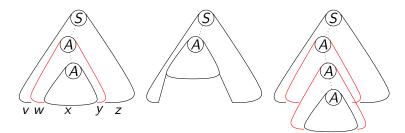
Feedback homework 3: Monday, 16 December (most of it, hopefully) Deadline homework 4: Monday, 16 December, 23:59 Exam: Thursday, 19 December, 09:00-12:00. Registration required Q&A session for exam: Tuesday, 17 December, 13:15 - 15:00?

Pumping CF derivations

From lecture 13:

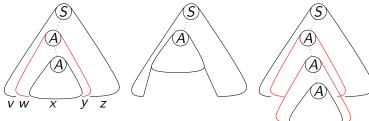


Pumping CF derivations

From lecture 13:

$$S \Rightarrow^* \textit{vAz} \Rightarrow^* \textit{vwAyz} \Rightarrow^* \textit{vwxyz}, \ \textit{v}, \textit{w}, \textit{x}, \textit{y}, \textit{z} \in \Sigma^*$$

$$S \underset{(1)}{\Rightarrow^*} vAz$$
, $A \underset{(2)}{\Rightarrow^*} wAy$, $A \underset{(3)}{\Rightarrow^*} x$



$$S \underset{(1)}{\Rightarrow^*} vAz \underset{(3)}{\Rightarrow^*} vxz$$

$$S \stackrel{(1)}{\Rightarrow^*} vAz \stackrel{(3)}{\Rightarrow^*} vwAyz \stackrel{*}{\Rightarrow^*} vwwAyyz \stackrel{*}{\Rightarrow^*} vwwxyyz$$

From lecture 13:

Theorem (Pumping Lemma for context-free languages)

- ∀ for every context-free language L
- \exists there exists a constant $n \ge 2$ such that
- \forall for every $u \in L$ with $|u| \ge n$
- \exists there exists a decomposition u = vwxyz
 - such that
 - $(1) |wy| \geq 1$
 - (2) $|wxy| \leq n$,
- \forall (3) for all $m \ge 0$, $vw^m xy^m z \in L$

[M] Thm. 6.1

Theorem (Pumping Lemma for context-free languages)

- ∀ for every context-free language L
- \exists there exists a constant $n \ge 2$ such that
- \forall for every $u \in L$ with $|u| \ge n$
- \exists there exists a decomposition $\mathbf{u} = \mathbf{v}\mathbf{w}\mathbf{x}\mathbf{y}\mathbf{z}$ such that
 - $(1) |wy| \geq 1$
 - (2) $|wxy| \leq n$,
- \forall (3) for all $m \ge 0$, $vw^m xy^m z \in L$

If L = L(G) with G in ChNF, then $n = 2^{|V|}$. Proof. . .

[M] Thm. 6.1

From lecture 9:

Definition

CFG in Chomsky normal form

productions are of the form

- $-A \rightarrow BC$ variables A, B, C
- $-A \rightarrow \sigma$ variable A, terminal σ

Theorem

For every CFG G there is CFG G_1 in CNF such that $L(G_1) = L(G) - \{\Lambda\}$.

[M] Def 4.29, Thm 4.30

Theorem (Pumping Lemma for context-free languages)

[M] Thm. 6.1

Proof

Let G be CFG in Chomsky normal form with $L(G) = L - \{\Lambda\}$.

Derivation tree in G is binary tree (where each parent of a leaf node has only one child).

Height of a tree is number of edges in longest path from root to leaf node.

At most 2^h leaf nodes in binary tree of height $h: |u| \le 2^h$.

Theorem (Pumping Lemma for context-free languages)

[M] Thm. 6.1

Proof (continued)

At most 2^h leaf nodes in binary tree of height $h: |u| \le 2^h$.

Let *p* be number of variables in *G*, let $n = 2^p$

and let $u \in L(G)$ with $|u| \ge n$.

(Internal part of) derivation tree of u in G has height at least p. Hence, longest path in (internal part of) tree contains at least p+1 (internal) nodes.

Consider final portion of longest path in derivation tree.

(leaf node + p + 1 internal nodes),

with > 2 occurrences of a variable A.

Pump up derivation tree, and hence u.

Application of pumping lemma:

mainly to prove that a language L cannot be generated by a context-free grammar.

How?

Find a string $u \in L$ with $|u| \ge n$ that cannot be pumped up!

What is *n*?

What should u be?

What can v, w, x, y and z be?

What should *m* be?

Suppose that there exists context-free grammar G with L(G) = L. Let $n \ge 2$ be the integer from the pumping lemma.

We prove:

There exists $u \in L$ with $|u| \ge n$, such that for every five strings v, w, x, y and z such that u = vwxyz if

- || |------|
- 1. $|wy| \ge 1$
- 2. $|wxy| \leq n$

then

3. there exists $m \ge 0$, such that $vw^m xy^m z$ does not belong to L

Applying the Pumping Lemma

Example

AnBnCn is not context-free.

[M] E 6.3

$$u = a^n b^n c^n$$

 $\{ x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x) \}$

Example

XX is not context-free.

[M] E 6.4

Applying the Pumping Lemma

Example

AnBnCn is not context-free.

[M] E 6.3

$$u = a^n b^n c^n$$

 $\{x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x)\}$

Example

XX is not context-free.

[M] E 6.4

$$u = a^n b^n a^n b^n$$

 $\{ a^i b^j a^i b^j \mid i, j \ge 0 \}$

Example

$$\{ x \in \{a,b,c\}^* \mid n_a(x) < n_b(x) \text{ and } n_a(x) < n_c(x) \} \text{ is not context-free.}$$

ABOVE

$$L = \{ x \in \{a, b, c\}^* \mid n_a(x) < n_b(x) \text{ and } n_a(x) < n_c(x) \} \text{ is not context-free.}$$

Proof by contradiction.

Suppose L is context-free, then there exists a pumping constant n for L.

Choose $u = a^n b^{n+1} c^{n+1}$. Then $u \in L$, and $|u| \ge n$.

This means that we can pump u within the language L.

Consider a decomposition u=vwxyz that satisfies the pumping lemma, in particular $|wxy| \leq n$.

Case 1: wy contains a letter a. Then wy cannot contain letter c (otherwise |wxy| > n). Now $u_2 = vw^2xy^2z$ contains more a's than u, so at least n+1, while u_2 still contains n+1 c's. Hence $u_2 \notin L$.

Case 2: wy contains no a. Then wy contains at least one b or one c (or both). Then $u_0 = vw^0xy^0z = vxz$ has still n a's, but less than n+1 b's or less than n+1 c's (depending on which letter is in wy). Hence $u_0 \notin L$.

These are two possibilities for the decomposition vwxyz, in both cases we see that pumping leads out of the language L.

Hence u cannot be pumped.

Contradiction; so L is not context-free.

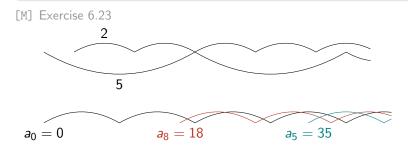
The Set of Legal C Programs is Not a CFL

```
[M] E 6.6 Choose u = main()\{int aaa...a;aaa...a=aaa...a;\} where aaa...a contains n+1 a's
```


Applying the Pumping Lemma (2)

Lemma (\boxtimes)

 $L \subseteq \{a\}^*$ context-free, then L regular.



This exercise does not have to be known for the exam.

From lecture 3:

Prove the following generalization of the pumping lemma, which can sometimes make it unnecessary to break the proof into cases.

If L can be accepted by an FA, then there is an integer n such that for any $x \in L$ with $|x| \ge n$ and for any way of writing x as $x_1x_2x_3$ with $|x_2| = n$, there are strings u, v and w such that

- a. $x_2 = uvw$
- b. $|v| \ge 1$
- c. For every $m \ge 0$, $x_1 u v^m w x_3 \in L$

Ogden's Lemma

Generalization of pumping lemma for CFL: pump at distinguished positions in \boldsymbol{u} Ogden's lemma does not have to be known for the exam.

Combining languages

From lecture 2:

FA
$$M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)$$
 $i = 1, 2$

Product construction

construct FA
$$M = (Q, \Sigma, q_0, A, \delta)$$
 such that

$$-Q = Q_1 \times Q_2$$

$$-q_0=(q_1,q_2)$$

$$-\delta((p,q),\sigma)=(\delta_1(p,\sigma),\delta_2(q,\sigma))$$

- A as needed

Theorem (2.15 Parallel simulation)

$$-A = \{(p,q) \mid p \in A_1 \text{ or } q \in A_2\}, \text{ then } L(M) = L(M_1) \cup L(M_2)$$

$$-A = \{(p,q) \mid p \in A_1 \text{ and } q \in A_2\}, \text{ then } L(M) = L(M_1) \cap L(M_2)$$

$$-A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2)$$

Proof...

Closure

From lecture 6:

Regular languages are closed under

- Boolean operations (complement, union, intersection)
- Regular operations (union, concatenation, star)
- Reverse (mirror)
- [inverse] Homomorphism

Regular operations and CFL

From lecture 7:

Using building blocks

Theorem

If L_1, L_2 are CFL, then so are $L_1 \cup L_2$, L_1L_2 and L_1^* .

 $G_i = (V_i, \Sigma, S_i, P_i)$, having no variables in common.

Construction

$$G = (V_1 \cup V_2 \cup \{S\}, \Sigma, S, P),$$
 new axiom $S - P = P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\}$ $L(G) = L(G_1) \cup L(G_2)$ $-P = P_1 \cup P_2 \cup \{S \to S_1S_2\}$ $L(G) = L(G_1)L(G_2)$

$$G = (V_1 \cup \{S\}, \Sigma, S, P)$$
, new axiom S
- $P = P_1 \cup \{S \rightarrow SS_1, S \rightarrow \Lambda\}$ $L(G) = L(G_1)^*$

[M] Thm 4.9

How about

- \circ $L_1 \cap L_2$
- \circ $L_1 L_2$

for CFLs L_1 and L_2 ?

From lecture 8:

Example

AnBnCn is intersection of two context-free languages.

$$L_1 = \{ a^i b^i c^k \mid i, k \ge 0 \}$$

$$L_2 = \{ a^i b^k c^k \mid i, k \ge 0 \}$$

[M] E 6.10

Hence, CFL is not closed under intersection

AnBnCn is intersection of two context-free languages.

[M] E 6.10

Hence, CFL is not closed under intersection

$$L_1 \cap L_2 = (L_1' \cup L_2')'$$

Hence, CFL is not closed under complement

$$L_1' = \Sigma^* - L_1$$

Hence, CFL is not closed under setminus

Complement of XX

=
$$\{ x \in \{a, b\}^* \mid |x| \text{ is odd } \} \cup \{ x y \mid x, y \in \{a, b\}^*, |x| = |y|, x \neq y \}$$
 is context-free

[M] E 6.11

Indeed, CFL is not closed under complement

Complement of AnBnCn is context-free.

[M] E 6.12

Complement of AnBnCn is context-free.

AnBnCn =
$$L_1 \cap L_2 \cap L_3$$
, with $L_1 = \{a^i b^j c^k \mid i \leq j\}$
 $L_2 = \{a^i b^j c^k \mid j \leq k\}$
 $L_3 = \{a^i b^j c^k \mid k \leq i\}$
[M] E 6.12

Complement of $\{x \in \{a,b,c\}^* \mid n_a(x) = n_b(x) = n_c(x)\}$ is context-free.

$$\{x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x)\} = A_1 \cap A_2 \cap A_3, \text{ with } A_1 = \{x \in \{a, b, c\}^* \mid n_a(x) \le n_b(x)\}$$

$$A_2 = \{x \in \{a, b, c\}^* \mid n_b(x) \le n_c(x)\}$$

$$A_3 = \{x \in \{a, b, c\}^* \mid n_c(x) \le n_a(x)\}$$

$$A_1 = \{x \in \{a, b, c\}^* \mid n_c(x) \le n_a(x)\}$$

$$A_2 = \{x \in \{a, b, c\}^* \mid n_c(x) \le n_a(x)\}$$

$$A_3 = \{x \in \{a, b, c\}^* \mid n_c(x) \le n_a(x)\}$$

Intersection CFL

Example

$$L_1 = \{ a^{2n}b^n \mid n \ge 1 \}^*$$
$$a^{16}b^8a^8b^4a^4b^2a^2b^1$$

$$L_2 = a^* \{ b^n a^n \mid n \ge 1 \}^* \{ b \}$$

Combining languages

From lecture 2:

FA
$$M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)$$
 $i = 1, 2$

Product construction

construct FA
$$M = (Q, \Sigma, q_0, A, \delta)$$
 such that

$$-Q=Q_1\times Q_2$$

$$-q_0=(q_1,q_2)$$

$$-\delta((p,q),\sigma) = (\delta_1(p,\sigma),\delta_2(q,\sigma))$$

- A as needed

Theorem (2.15 Parallel simulation)

$$-A = \{(p,q) \mid p \in A_1 \text{ or } q \in A_2\}, \text{ then } L(M) = L(M_1) \cup L(M_2)$$

$$-A = \{(p,q) \mid p \in A_1 \text{ and } q \in A_2\}, \text{ then } L(M) = L(M_1) \cap L(M_2)$$

$$-A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2)$$

Proof...

Theorem

If L_1 is a CFL, and L_2 in REG, then $L_1 \cap L_2$ is CFL.

[M] Thm 6.13

product construction

PDA
$$M_1=(Q_1,\Sigma,\Gamma,q_1,Z_1,A_1,\delta_1)$$

fa
$$M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$$

$$Q = Q_1 \times Q_2$$
 $q_0 = \langle q_1, q_2 \rangle$ $A = A_1 \times A_2$

$$\delta(\langle p_1, q_1 \rangle, \sigma, X) \ni (\langle p_2, q_2 \rangle, \alpha)$$

whenever $\delta_1(p_1, \sigma, X) \ni (p_2, \alpha)$ and $\delta_2(q_1, \sigma) = q_2$

$$\delta(\langle p_1, q \rangle, \Lambda, X) \ni (\langle p_2, q \rangle, \alpha)$$

whenever $\delta_1(p_1, \Lambda, X) \ni (p_2, \alpha)$ and $q \in Q_2$

The inductive proof that this construction works does not have to be known for the exam.

Also CFG proof

Example: product construction

Non-determinism of PDA

- enables $L(M_1) \cup L(M_2)$
- 'prevents' $L(M_1)'$ (also Λ -transitions)

If L is accepted by DPDA without Λ -transitions, then so is L'

Even: if L is accepted by DPDA, then so is L'

Hence, if L is CFL and L' is not, then there is no DPDA for L Not reversed (see Pal)

END.

Thanks to HJH for the slides

