
Homework 4! (probably Monday evening)
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Context-free languages

Due to Chomsky, Evey, and Schützenberger (1962/3).

Theorem

Context-free grammars and Pushdown automata are equivalent.

→֒(1) PDA acceptance by empty stack

→֒(2) triplet construction, CFG nonterminals [p,A, q] for PDA computations
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Computation and language

From lecture 11:
M = (Q,Σ, Γ, q0,Z0,A, δ)

configuration (q, x , α) q ∈ Q, x ∈ Σ∗, α ∈ Γ∗

state, remaining input, stack with top left

step (p, ax ,Bα) ⊢M (q, x , βα) when (q, β) ∈ δ(p, a,B)
⊢n

M
⊢∗

M
⊢ ⊢n ⊢∗

Definition

String x accepted by M (by final state), if
(q0, x ,Z0) ⊢

∗ (q,Λ, α) for some q ∈ A, and some α ∈ Γ∗

Language accepted by M (by final state)
L(M) = { x ∈ Σ∗ | x accepted by M }

read complete input, end in accepting state, some path

[M] D 5.2
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Empty stack

0 1 2

’fake’ empty

c

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

check state

0 1
c

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Λ

check stack
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above

On many cases the PDA moves to the accepting state after checking
that the stack is empty, when the topmost symbol is a special Z0 that
always has been at the bottom of the stack.

It may be more natural to accept directly by looking at the stack rather

than by looking at the state. This leads to the notion of the empty stack

language of a PDA.



Acceptance by empty stack

M = (Q,Σ, Γ, q0,Z0,A, δ)

Definition

Language accepted by M by empty stack
Le(M) = { x ∈ Σ∗ | (q0, x ,Z0) ⊢

∗ (q,Λ,Λ) for some state q ∈ Q }

[M] D 5.27

Theorem

If M is a PDA then there is a PDA M1 such that Le(M1) = L(M).

Sketch of proof. . .
[M] Th 5.28
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Final state to empty stack

Simulate M = (Q,Σ, Γ, q0,Z0,A, δ)
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Final state to empty stack

Simulate M = (Q,Σ, Γ, q0,Z0,A, δ)
– empty stack ‘at’ final state
– prohibit early empty stack

Z0

q1 q0 q qe

Construction PDA M1 = (Q1,Σ, Γ1, q1,Z1,A1, δ1) such that
Le(M1) = L(M)

– Q1 = Q ∪ {q1, qe}
– Γ1 = Γ ∪ {Z1}
– new instructions:
δ1(q1,Λ,Z1) = {(q0,Z0Z1)}
δ1(q,Λ,X ) ∋ (qe ,X ) for q ∈ A, and X ∈ Γ1
δ1(qe ,Λ,X ) = {(qe ,Λ)} for X ∈ Γ1
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Expand-match with empty stack

A → α ∈ P , a ∈ Σ

0 1 2
Λ,Z0/SZ0

Λ,A/α

Λ,Z0/Z0

a, a/Λ

Λ,Z0/Z0
1

Λ,A/α

a, a/Λ

Theorem

For every CFL L there exists a single state PDA M such that Le(M) = L.
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above

Now that we have empty stack acceptance we can reconsider the
expand-match technique. In fact we do not need two extra states to
introduce a bottom of stack symbol, and can make a single state PDA.

below

The expand-match method can be used for any CFG. If we slightly
restrict the grammars, we can combine each match with the expand
step just before, that introduced the terminal. This gives a very direct
translation between grammar and its leftmost derivation, and a single
state PDA and its computation.

On this normal form each production is of the form A → aα, where

a ∈ Σ ∪ {Λ} can be the only terminal at the right. That means that

any terminal pushed on the stack will be on top, and immediately will

be matched.



Single state & empty stack

cfg G ⇐⇒ 1-pda M
A → α δ(−,Λ,A) ∋ (−, α) expand

δ(−, a, a) = {(−,Λ)} match

normal form α ∈ (Σ ∪ {Λ}) · V ∗

A → aα δ(−, a,A) ∋ (−, α) combined

SimplePal : S → aSA | bSB | c A → a B → b
leftmost derivation ⇐⇒ computation

S
⇒ a SA
⇒ ab SBA
⇒ abb SBBA
⇒ abbc BBA
⇒ abbcb BA
⇒ abbcbb A
⇒ abbcbba

(−, abbcbba, S)
⊢ (−, bbcbba, SA)
⊢ (−, bcbba, SBA)
⊢ (−, cbba, SBBA)
⊢ (−, bba,BBA)
⊢ (−, ba,BA)
⊢ (−, a, A)
⊢ (−,Λ,Λ)

In this case: deterministic PDA
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Exercise 5.21.

Prove the converse of Theorem 5.28:
If there is a PDA M = (Q,Σ, Γ, q0,Z0,A, δ) accepting L by empty stack
(that is, x ∈ L if and only if (q0, x ,Z0) ⊢

∗

M
(q,Λ,Λ) for some state q),

then there is a PDA M1 accepting L by final state (i.e., the ordinary way).
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From PDA to CFG

Theorem

If L = Le(M) is the empty stack language of PDA M, then there exists a
CFG G such that L = L(G ).

[M] Th 5.29

M = (Q,Σ, Γ, q0,Z0,A, δ)
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From PDA to CFG

Theorem

If L = Le(M) is the empty stack language of PDA M, then there exists a
CFG G such that L = L(G ).

[M] Th 5.29

M = (Q,Σ, Γ, q0,Z0,A, δ)

triplet construction

nonterminals [p,A, q] p, q ∈ Q, A ∈ Γ
[p,A, q] ⇒∗

G
w iff (p,w ,A) ⊢∗

M
(q,Λ,Λ)

A

p q
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– productions

✍✌
✎☞

✍✌
✎☞

✲p qσ,A/Λ

[p,A, q] → σ for (q,Λ) ∈ δ(p, σ,A)

✍✌
✎☞

✍✌
✎☞

✲p q1
σ,A/B1 . . .Bn

A

B1

B2

B3

B2

B3

p q1 q2 q3 q

[p,A, q] → σ [q1,B1, q2][q2,B2, q3] · · · [qn,Bn, q]
for (q1,B1 · · ·Bn) ∈ δ(p, σ,A), and q, q2, . . . , qn ∈ Q

S → [q0,Z0, q] for all q ∈ Q
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N.B.: σ may also be Λ

Construction from PDA to CFG, and the intuition behind it, must be
known for the exam.
The details of the proof that L(G ) = Le(M) do not have to be known for
the exam.

Automata Theory Pushdown Automata Empty stack acceptance 437 / 487



Example

1 2
c

a,+A
b,+B

a,A/Λ

b,B/Λ

Λ,Z0/Λ

check stack

Automata Theory Pushdown Automata Empty stack acceptance 438 / 487



Example

1 2
c

a,+A
b,+B

a,A/Λ

b,B/Λ

Λ,Z0/Λ

Le(M) = SimplePal = { wcw r | w ∈ {a, b}∗ }

12 transitions ⇒ 33 (+2) productions (!)

X ∈ {A,B ,Z0}

S → [1,Z0, 1] | [1,Z0, 2]
δ(1, a,X ) = {(1,AX )} [1,X , 1] → a [1,A, 1][1,X , 1]

[1,X , 1] → a [1,A, 2][2,X , 1]
[1,X , 2] → a [1,A, 1][1,X , 2]
[1,X , 2] → a [1,A, 2][2,X , 2]

δ(1, b,X ) = {(1,BX )} . . .
δ(1, c ,X ) = {(2,X )} [1,X , 1] → c [2,X , 1]

[1,X , 2] → c [2,X , 2]
δ(2, a,A) = {(2,Λ)} [2,A, 2] → a
δ(2, b,B) = {(2,Λ)} [2,B , 2] → b
δ(2,Λ,Z0) = {(2,Λ)} [2,Z0, 2] → Λ

not ‘live’
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Example

From lecture 12:
AeqB = { x ∈ {a, b}∗ | na(x) = nb(x) }

S → Λ | aB | bA
A → aS | bAA
B → bS | aBB

0 1 2
Λ,Z0/SZ0

Λ, S/Λ

Λ, S/aB

Λ, S/bA

Λ,A/aS

Λ,A/bAA

Λ,B/bS

Λ,B/aBB

Λ,Z0/Z0

a, a/Λ

b, b/Λ

Λ,Z0/Z0

5.5. Parsing: make PDA (more)
deterministic by looking ahead
one symbol in input.
See Compiler Construction

Automata Theory Pushdown Automata LL(1) 440 / 487



Section 6

Context-Free and Non-Context-Free Languages
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Chapter

5 Context-Free and Non-Context-Free Languages
Pumping Lemma
Decision problems
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Pumping lemma for regular languages

From lecture 2:
Regular language is language accepted by an FA.

Theorem

Suppose L is a language over the alphabet Σ. If L is accepted by a finite
automaton M, and if n is the number of states of M, then
∀ for every x ∈ L

satisfying |x | ≥ n
∃ there are three string u, v , and w,

such that x = uvw and the following three conditions are true:
(1) |uv | ≤ n,
(2) |v | ≥ 1

∀ and (3) for all i ≥ 0, uv iw belongs to L

[M] Thm. 2.29
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Pumping lemma

From lecture 2:

q0
u

v

w

[M] Fig. 2.28
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Pumping CF derivations

S

A

A

v w x y z

S

A

S

A

A

A
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Pumping CF derivations

S ⇒∗ vAz ⇒∗ vwAyz ⇒∗ vwxyz , v ,w , x , y , z ∈ Σ∗

S ⇒
(1)

∗ vAz , A ⇒
(2)

∗ wAy , A ⇒
(3)

∗ x

S

A

A

v w x y z

S

A

S

A

A

A

S ⇒
(1)

∗ vAz ⇒
(3)

∗ vxz

S ⇒
(1)

∗ vAz ⇒
(2)

∗ vwAyz ⇒
(2)

∗ vwwAyyz ⇒
(3)

∗ vwwxyyz
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Theorem (Pumping Lemma for context-free languages)

∀ for every context-free language L
∃ there exists a constant n ≥ 2

such that
∀ for every u ∈ L

with |u| ≥ n
∃ there exists a decomposition u = vwxyz

such that
(1) |wy | ≥ 1
(2) |wxy | ≤ n,

∀ (3) for all m ≥ 0, vwmxymz ∈ L

[M] Thm. 6.1
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Applying the Pumping Lemma

Example

AnBnCn is not context-free.

[M] E 6.3
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