Quiz

Normal form

unwanted in CFG:

– variables not used in successful derivations $S \Rightarrow^* x \in \Sigma^*$

Useful etc.

CFG $G = (V, \Sigma, S, P)$

Definition

variable A is live if $A \Rightarrow^* x$ for some $x \in \Sigma^*$.

variable A is *reachable* if $S \Rightarrow^* \alpha A\beta$ for some $\alpha, \beta \in (\Sigma \cup V)^*$.

variable A is useful if there is a derivation of the form $S \Rightarrow^* \alpha A \beta \Rightarrow^* x$ for some string $x \in \Sigma^*$.

useful implies live and reachable. conversely, . . . [M] Exercise 4.51, 4.52, 4.53

CFG $G = (V, \Sigma, S, P)$

Definition variable A is live if $A \Rightarrow^* x$ for some $x \in \Sigma^*$. variable A is *reachable* if $S \Rightarrow^* \alpha A\beta$ for some $\alpha, \beta \in (\Sigma \cup V)^*$. variable A is useful if there is a derivation of the form $S \Rightarrow^* \alpha A \beta \Rightarrow^* x$ for some string $x \in \Sigma^*$.

useful implies live and reachable.

For $S \to AB \mid b$ and $A \to a$, variable A is live and reachable, not useful. [M] Exercise 4.51, 4.52, 4.53

Live variables

Construction

 $-N_0 = \varnothing$

 $-N_{i+1} = N_i \cup \{ A \in V \mid A \rightarrow \alpha \text{ in } P, \text{ with } \alpha \in (N_i \cup \Sigma)^* \}$

$$
N_1 = \{ A \in V \mid A \to x \text{ in } P, \text{ with } x \in \Sigma^* \}
$$

$$
N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq V
$$

there exists a *k* such that $N_k = N_{k+1}$
A is live iff $A \in \bigcup_{i \geq 0} N_i = N_k$
(minimal) depth of derivation tree $A \Rightarrow^* x$

Recursion, and an algorithm (exercise class)

Live variables

Construction $-N_0 = \varnothing$

 $-N_{i+1}=N_i\cup\{A\in V\mid A\rightarrow\alpha \text{ in } P, \text{ with } \alpha\in(N_i\cup\Sigma)^*\}$

Exercise 4.53(c_i).
\n
$$
S \rightarrow ABC \mid BaB
$$
 $A \rightarrow aA \mid BaC \mid aaa$
\n $B \rightarrow bBb \mid a$ $C \rightarrow CA \mid AC$

Reachable variables

Construction

 $-N_0 = \{S\}$ $-N_{i+1}=N_i\cup\{A\in V\mid B\rightarrow \alpha_1A\alpha_2\text{ in }P, \text{ with }B\in N_i\}$

 $N_0 \subset N_1 \subset N_2 \subset \cdots \subset V$ there exists a k such that $N_k = N_{k+1}$ A is reachable iff $A\in\bigcup_{i\geq 0}N_i=N_k$ (minimal) length of derivation $S \Rightarrow^* \alpha A\beta$

Reachable variables

Construction

 $-N_0 = \{S\}$

 $-N_{i+1}=N_i\cup\{A\in V\mid B\rightarrow \alpha_1A\alpha_2 \text{ in } P$, with $B\in N_i\}$

 $N_0 \subset N_1 \subset N_2 \subset \cdots \subset V$ there exists a k such that $N_k = N_{k+1}$ A is reachable iff $A\in\bigcup_{i\geq 0}N_i=N_k$ (minimal) length of derivation $S \Rightarrow^* \alpha A\beta$

– remove all non-live variables (and productions that contain them)

– remove all unreachable variables (and their productions)

then all variables are useful

Automata Theory Context-Free Languages **Normal form** Normal form 272 / 304

Algorithm, ctd. (exercise class)

Reachable variables

Construction

$$
- N_0 = \{S\}
$$

- N_{i+1} = N_i \cup { $A \in V \mid B \rightarrow \alpha_1 A \alpha_2$ in P, with $B \in N_i$ }

$$
\begin{aligned} &\textbf{Exercise 4.53(c_i), ctd} \\ &S \rightarrow \textit{BaB} \qquad \qquad A \rightarrow aA \mid aaa \qquad \qquad B \rightarrow \textit{bBb} \mid a \end{aligned}
$$

Automata Theory Context-Free Languages **Normal form** Normal form **273** / 304

 $\leftarrow \equiv +$

– remove all non-live variables (and productions that contain them)

– remove all unreachable variables (and productions)

then all variables are useful

does not work the other way around . . .

Exercise 4.53(c_i)., revisited $S \rightarrow ABC \mid BaB$ $A \rightarrow aA \mid BaC \mid aaa$ $B \to bBb \mid a$ $C \to CA \mid AC$

 $\leftarrow \equiv$ +

unwanted in CFG:

– variables not used in successful derivations $S \Rightarrow^* x \in \Sigma^*$

sometimes unwanted:

 $-A \rightarrow B$ A, B variables unit productions [chain rules]

 $S \rightarrow A \mid aB$ $A \rightarrow B \mid bS$ $B \rightarrow bb \mid S$

 $S \Rightarrow A \Rightarrow B \Rightarrow S$

Normal form

unwanted in CFG: – variables not used in successful derivations $S \Rightarrow^* x \in \Sigma^*$ $-A \rightarrow B$ A, B variables unit productions [chain rules] sometimes unwanted: $-A \rightarrow \Lambda$ A variable Λ -productions

$$
S \rightarrow AB \mid aB
$$
 $A \rightarrow BS \mid bS$ $B \rightarrow bb \mid \Lambda$
 $S \Rightarrow AB \Rightarrow BSB \Rightarrow SB \Rightarrow S$

Automata Theory Context-Free Languages **Normal form** Normal form 276 / 304

Normal form

Let *I* be length of a string in a derivation Let t be number of terminals in a string in a derivation

If G has no Λ-productions, and no unit productions, then . . .

Let *I* be length of a string in a derivation Let t be number of terminals in a string in a derivation

If G has no Λ-productions, and no unit productions, then $l + t$ strictly increases in every step of a derivation Proof ...

```
Hence, a string x \in \Sigma^* can only be generated in derivations of at most
2|x| - 1 steps
May be used to test if x \in L(G)
```
Normal form

unwanted in CFG:

- variables not used in successful derivations $S \Rightarrow^* x \in \Sigma^*$
- $-A \rightarrow \Lambda$ A variable Λ -productions $-A \rightarrow B$ A, B variables unit productions [chain rules]

restricted CFG, with 'nice' form Chomsky normal form $A \rightarrow BC$, $A \rightarrow \sigma$ Greibach normal form (\boxtimes) $A \rightarrow \sigma B_1 \dots B_k$

Idea:

Example

 $A \rightarrow BCDCB$ $B \to b \mid \Lambda$ $C \rightarrow c \mid \Lambda$ $D \rightarrow d$

Definition

variable A is *nullable* iff $A \Rightarrow^* \Lambda$

Theorem

 $-$ if $A \rightarrow \Lambda$ then A is nullable – if $A \rightarrow B_1 B_2 \dots B_k$ and all B_i are nullable, then A is nullable

[M] Def 4.26 / Exercise 4.48

Construction

 $-N_0 = \varnothing$

$$
- N_{i+1} = N_i \cup \{ A \in V \mid A \rightarrow \alpha \text{ in } P, \text{ with } \alpha \in N_i^* \}
$$

$$
N_1 = \{ A \in V \mid A \to \Lambda \text{ in } P \}
$$

\n
$$
N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq V
$$

\nthere exists a *k* such that $N_k = N_{k+1}$
\n*A* is nullable iff $A \in \bigcup_{i \geq 0} N_i = N_k$

Construction

- identify nullable variables
- for every production $A \rightarrow \alpha$ add $A \rightarrow \beta$,

where β is obtained from α by removing one or more nullable variables

– remove all Λ-productions

Grammar for
$$
\{ a^i b^j c^k \mid i = j \text{ or } i = k \}
$$

\n $S \rightarrow \text{T} U \mid V$

\n $T \rightarrow a \text{T} b \mid \Lambda$

\n $U \rightarrow cU \mid \Lambda$

\n $V \rightarrow aVc \mid W$

\n $W \rightarrow bW \mid \Lambda$

Example nullable

Grammar for
$$
\{ a^i b^j c^k \mid i = j \text{ or } i = k \}
$$

\n $S \rightarrow \mathsf{T} U \mid V$

\n $\mathsf{T} \rightarrow a \mathsf{T} b \mid \Lambda$

\n $U \rightarrow cU \mid \Lambda$

\n $V \rightarrow aVc \mid W$

\n $W \rightarrow bW \mid \Lambda$

 $N_1 = \{T, U, W\}$, variables with Λ at right-hand side productions $N_2 = \{T, U, W\} \cup \{S, V\}$, variables with $\{T, U, W\}^*$ at rhs productions $N_3 = N_2 = \{T, U, W, S, V\}$, all variables found, no new

Automata Theory Context-Free Languages **Normal form** Normal form 283 / 304

 $\leftarrow \equiv$ +

add all productions, where (any number of) nullable variables are removed. . .

$$
S \rightarrow \tau U \mid V
$$

\n
$$
T \rightarrow aTb \mid \Lambda
$$

\n
$$
U \rightarrow cU \mid \Lambda
$$

\n
$$
V \rightarrow aVc \mid W
$$

\n
$$
W \rightarrow bW \mid \Lambda
$$

[M] Ex. 4.31

Automata Theory Context-Free Languages **Normal form** Normal form 284 / 304

Example nullable, ctd

add all productions, where (any number of) nullable variables are removed

 $S \to \mathcal{T}U \mid V$ $S \to \mathcal{T} \mid U \mid \Lambda$ $T \rightarrow aTb \mid \Lambda$ $T \rightarrow ab$ $U \rightarrow cU \mid \Lambda$ $U \rightarrow c$ $V \rightarrow aVc \mid W$ $V \rightarrow ac \mid \Lambda$ $W \rightarrow bW \mid \Lambda$ $W \rightarrow b$

remove all Λ-productions. . .

[M] Ex. 4.31

Automata Theory Context-Free Languages **Normal form** Normal form 285 / 304

Example nullable, ctd

add all productions, where (any number of) nullable variables are removed

$$
S \rightarrow TU \mid V \qquad S \rightarrow T \mid U \mid \Lambda
$$

\n
$$
T \rightarrow aTb \mid \Lambda \qquad T \rightarrow ab
$$

\n
$$
U \rightarrow cU \mid \Lambda \qquad U \rightarrow c
$$

\n
$$
V \rightarrow aVc \mid W \qquad V \rightarrow ac \mid \Lambda
$$

\n
$$
W \rightarrow bW \mid \Lambda \qquad W \rightarrow b
$$

remove all Λ-productions

$$
S \rightarrow TU \mid V \mid T \mid U
$$

\n
$$
T \rightarrow aTb \mid ab
$$

\n
$$
U \rightarrow cU \mid c
$$

\n
$$
V \rightarrow aVc \mid W \mid ac
$$

\n
$$
W \rightarrow bW \mid b
$$

[M] Ex. 4.31 Can we still derive $\{ a^i b^j c^k \mid i = j \text{ or } i = k \}$?

Theorem

For every CFG G there is CFG G_1 without Λ -productions such that $L(G_1) = L(G) - \{\Lambda\}.$

Proof $L(G) - \{\Lambda\} \subseteq L(G_1)$... [M] Thm 4.27

Theorem

For every CFG G there is CFG G_1 without Λ -productions such that $L(G_1) = L(G) - \{\Lambda\}.$

Proof $L(G) - \Lambda$ $\subset L(G_1)$ $G = (V, \Sigma, S, P)$ Consider arbitrary $x \in L(G) - \{\Lambda\}$ $S \Rightarrow^*_{G} x$, i.e., $S \Rightarrow^{\bar{n}}_{G} x$ for some $n \geq 1$ Needed: $S \Rightarrow_{G_1}^* x$ We prove more general statement: For all $A \in V$, $n \ge 1$ and $x \in \Sigma^* - {\Lambda}$, if $A \Rightarrow^n_G x$, then $A \Rightarrow^*_{G_1} x$, using induction on *n* Basis, $n = 1$: If $A \Rightarrow_G x$, then also $A \Rightarrow_{G_1} x$

Theorem

For every CFG G there is CFG G_1 without Λ -productions such that $L(G_1) = L(G) - \{\Lambda\}.$

Proof $L(G) - \Lambda$ \subseteq $L(G_1)$ (continued)

Induction hypothesis: Let $k \geq 1$, and suppose that for all $A \in V$, $n \leq k$ and $x \in \Sigma^* - {\Lambda}$, if $A \Rightarrow^n_G x$, then $A \Rightarrow^n_{G_1} x$ Induction step: Consider $A \Rightarrow_{G}^{k+1} x$ then $A \Rightarrow_G X_1 X_2 \dots X_m \Rightarrow_G^k x = x_1 x_2 \dots x_m$, for some $m \geq 1$ and $X_1, X_2, \ldots, X_m \in V \cup \Sigma$ Three cases: 1. X_i is terminal 2. X_i is variable and $x_i \neq \Lambda$ 3. X_i is variable and $x_i = \Lambda$ [M] Thm 4.27

Automata Theory Context-Free Languages **Normal form** Normal form 289 / 304

Removing unit productions

Idea:

Example

 $A \rightarrow B \mid aCb$ $B \to C \mid Bb \mid Bc$ $C \rightarrow c \mid ABC$

 $\left\langle \quad \right\rangle \equiv \quad \rightarrow$

Removing unit productions

Assume Λ-productions have been removed

Variable B is A-derivable, if

 $- B \neq A$, and

 $- A \Rightarrow B$ (using only unit productions)

Construction

$$
- N_1 = \{ B \in V \mid B \neq A \text{ and } A \rightarrow B \text{ in } P \}
$$

- N_{i+1} = N_i \cup { $C \in V \mid C \neq A$ and $B \rightarrow C$ in P , with $B \in N_i$ }

 $N_1 \subset N_2 \subset \cdots \subset V$ there exists a k such that $N_k = N_{k+1}$ B is A-derivable iff $B\in \bigcup_{i\geq 1}N_i=N_k$

Automata Theory Context-Free Languages **Normal form** Normal form 291 / 304

Removing unit productions

Construction

- for each $A \in V$, identify A-derivable variables
- for every pair (A, B) where B is A-derivable, and every production $B \to \alpha$ add $A \to \alpha$
- remove all unit productions

Grammar for
$$
\{ a^i b^j c^k \mid i = j \text{ or } i = k \}
$$

\n $S \rightarrow \mathcal{T}U \mid V \mid \mathcal{T} \mid U$

\n $\mathcal{T} \rightarrow a\mathcal{T}b \mid ab$

\n $U \rightarrow cU \mid c$

\n $V \rightarrow aVc \mid W \mid ac$

\n $W \rightarrow bW \mid b$

Automata Theory Context-Free Languages **Normal form** Normal form 292 / 304

Example unit productions

 $S \rightarrow T U \mid V \mid T \mid U$ $T \rightarrow aTb \mid ab$ $U \rightarrow cU \mid c$ $V \rightarrow aVc \mid W \mid ac$ $W \rightarrow bW \mid b$ S-derivable: $\{V, T, U\}, \{V, T, U, W\}$ V-derivable: $\{W\}$

New productions:

 $S \rightarrow aTb \mid ab \quad S \rightarrow cU \mid c \quad S \rightarrow aVc \mid W \mid ac \quad S \rightarrow bW \mid b$ $V \rightarrow bW \mid b$

Remove unit productions:

$$
S \rightarrow TU \mid aTb \mid ab \mid cU \mid c \mid aVc \mid ac \mid bW \mid b
$$

\n
$$
T \rightarrow aTb \mid ab
$$

\n
$$
U \rightarrow cU \mid c
$$

\n
$$
V \rightarrow aVc \mid ac \mid bW \mid b
$$

\n
$$
W \rightarrow bW \mid b
$$

Definition

CFG in Chomsky normal form productions are of the form $-A \rightarrow BC$ variables A, B, C $-A \rightarrow \sigma$ variable A, terminal σ

Theorem

For every CFG G there is CFG G_1 in CNF such that $L(G_1) = L(G) - \{ \Lambda \}.$

[M] Def 4.29, Thm 4.30

Construction ChNF

Construction

- ¹ remove Λ-productions
- ² remove unit productions
- 3 introduce variables for terminals $X_{\sigma} \rightarrow \sigma$
- ⁴ split long productions

 $A \rightarrow ABabA$ is replaced by $X_a \rightarrow a$ $X_b \rightarrow b$ $A \rightarrow X_a B X_a X_b A$ $A \rightarrow ACBA$ is replaced by $A \rightarrow AY_1 \qquad Y_1 \rightarrow CY_2 \qquad Y_2 \rightarrow BA$ Mind the order

Automata Theory Context-Free Languages **Chomsky normal form** 295 / 304

ChNF, example

Grammar for
$$
\{ a^i b^j c^k \mid i = j \text{ or } i = k \}
$$

\n $S \rightarrow \text{T} U \mid V$

\n $T \rightarrow a \text{T} b \mid \Lambda$

\n $U \rightarrow cU \mid \Lambda$

\n $V \rightarrow aVc \mid W$

\n $W \rightarrow bW \mid \Lambda$

After removing Λ-productions and unit productions, we obtain (see before) $S \rightarrow TU \mid aTb \mid ab \mid cU \mid c \mid aVc \mid ac \mid bW \mid b$ $T \rightarrow aTb \mid ab \qquad U \rightarrow cU \mid c$ $V \rightarrow aVc$ | ac | bW | b W $\rightarrow bW$ | b

Now introduce productions for the terminals. . .

Automata Theory Context-Free Languages **Chomsky normal form** 296 / 304

ChNF, example

Grammar for
$$
\{ a^i b^j c^k \mid i = j \text{ or } i = k \}
$$

\n $S \rightarrow \text{T} U \mid V$

\n $T \rightarrow a \text{T} b \mid \Lambda$

\n $U \rightarrow cU \mid \Lambda$

\n $V \rightarrow aVc \mid W$

\n $W \rightarrow bW \mid \Lambda$

After removing Λ-productions and unit productions, we obtain (see before) $S \rightarrow TU \mid aTb \mid ab \mid cU \mid c \mid aVc \mid ac \mid bW \mid b$ $T \rightarrow aTb \mid ab \qquad U \rightarrow cU \mid c$ $V \rightarrow aVc \mid ac \mid bW \mid b \qquad W \rightarrow bW \mid b$

Now introduce productions for the terminals:

$$
X_a \rightarrow a \qquad X_b \rightarrow b \qquad X_c \rightarrow c
$$

\n
$$
S \rightarrow TU \mid X_a TX_b \mid X_a X_b \mid X_c U \mid c \mid X_a V X_c \mid X_a X_c \mid X_b W \mid b
$$

\n
$$
T \rightarrow X_a TX_b \mid X_a X_b
$$

\n
$$
U \rightarrow X_c U \mid c
$$

\n
$$
V \rightarrow X_a V X_c \mid X_a X_c \mid X_b W \mid b
$$

\n
$$
W \rightarrow X_b W \mid b
$$

Automata Theory Context-Free Languages **Chomsky normal form** 297 / 304

 $\leftarrow \equiv$ +

ChNF, example ctd.

Only a few productions that are too long: $S \to X_a T X_b \mid X_a V X_c$ $T \rightarrow X_a T X_b$ $V \rightarrow X_a V X_c$

Split these long productions...

 $\left\langle \quad \right\rangle \equiv \quad \rightarrow$

Only a few productions that are too long: $S \to X_a T X_b$ | $X_a V X_c$ $T \rightarrow X_2TX_6$ $V \rightarrow X_2 V X_c$

Split these long productions:

$$
S \rightarrow X_a Y_1 | X_a Y_2
$$

\n
$$
Y_1 \rightarrow TX_b \qquad Y_2 \rightarrow V X_c
$$

\n
$$
T \rightarrow X_a Y_3
$$

\n
$$
V \rightarrow X_a Y_4
$$

\n
$$
Y_3 \rightarrow TX_b \qquad Y_4 \rightarrow V X_c
$$

Note that we can reuse Y_1 ($\approx Y_3$) and Y_2 ($\approx Y_4$) for two productions

Automata Theory Context-Free Languages **Chomsky normal form** 299 / 304

Homework

Homework 3! (probably Wednesday)