Quiz

< ∃ ≻

Normal form

unwanted in CFG:

– variables not used in successful derivations $S \Rightarrow^* x \in \Sigma^*$

cfg $G = (V, \Sigma, S, P)$

Definition variable A is *live* if $A \Rightarrow^* x$ for some $x \in \Sigma^*$. variable A is *reachable* if $S \Rightarrow^* \alpha A\beta$ for some $\alpha, \beta \in (\Sigma \cup V)^*$. variable A is *useful* if there is a derivation of the form $S \Rightarrow^* \alpha A\beta \Rightarrow^* x$ for some string $x \in \Sigma^*$.

useful implies live and reachable. conversely, ... [M] Exercise 4.51, 4.52, 4.53

< ∃ >

CFG $G = (V, \Sigma, S, P)$

Definition variable A is *live* if $A \Rightarrow^* x$ for some $x \in \Sigma^*$. variable A is *reachable* if $S \Rightarrow^* \alpha A\beta$ for some $\alpha, \beta \in (\Sigma \cup V)^*$. variable A is *useful* if there is a derivation of the form $S \Rightarrow^* \alpha A\beta \Rightarrow^* x$ for some string $x \in \Sigma^*$.

useful implies live and reachable. For $S \rightarrow AB \mid b$ and $A \rightarrow a$, variable A is live and reachable, not useful. [M] Exercise 4.51, 4.52, 4.53

Automata Theory Context-Free Languages

Normal form

▲ ≣ ▶268 / 304

Live variables

Construction

 $-N_0 = \varnothing$

 $-N_{i+1} = N_i \cup \{ A \in V \mid A \rightarrow \alpha \text{ in } P, \text{ with } \alpha \in (N_i \cup \Sigma)^* \}$

$$N_1 = \{ A \in V \mid A \to x \text{ in } P, \text{ with } x \in \Sigma^* \}$$

$$N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq V$$

there exists a k such that $N_k = N_{k+1}$
A is live iff $A \in \bigcup_{i \ge 0} N_i = N_k$
(minimal) depth of derivation tree $A \Rightarrow^* x$

Recursion, and an algorithm (exercise class)

Live variables

Construction $-N_0 = \emptyset$ $-N_{i+1} = N_i \cup \{ A \in V \mid A \to \alpha \text{ in } P, \text{ with } \alpha \in (N_i \cup \Sigma)^* \}$

Exercise 4.53(
$$c_{-i}$$
). $S \rightarrow ABC \mid BaB$ $A \rightarrow aA \mid BaC \mid aaa$ $B \rightarrow bBb \mid a$ $C \rightarrow CA \mid AC$

< ∃ >

Reachable variables

Construction

 $-N_0 = \{S\}$ - $N_{i+1} = N_i \cup \{A \in V \mid B \to \alpha_1 A \alpha_2 \text{ in } P, \text{ with } B \in N_i \}$

 $N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq V$ there exists a k such that $N_k = N_{k+1}$ A is reachable iff $A \in \bigcup_{i \ge 0} N_i = N_k$ (minimal) length of derivation $S \Rightarrow^* \alpha A\beta$

Reachable variables

Construction

$$-N_0 = \{S\}$$

 $-N_{i+1} = N_i \cup \{ A \in V \mid B \to \alpha_1 A \alpha_2 \text{ in } P, \text{ with } B \in N_i \}$

 $N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq V$ there exists a k such that $N_k = N_{k+1}$ A is reachable iff $A \in \bigcup_{i \ge 0} N_i = N_k$ (minimal) length of derivation $S \Rightarrow^* \alpha A \beta$

- remove all non-live variables (and productions that contain them)

- remove all unreachable variables (and their productions)

then all variables are useful

Algorithm, ctd. (exercise class)

Reachable variables

Construction $- N_0 = \{S\}$ $- N_{i+1} = N_i \cup \{ A \in V \mid B \to \alpha_1 A \alpha_2 \text{ in } P, \text{ with } B \in N_i \}$

Exercise 4.53(c_i)., ctd
$$S \rightarrow BaB$$
 $A \rightarrow aA \mid aaa$ $B \rightarrow bBb \mid a$

Automata Theory Context-Free Languages

Normal form

₹ ≣ ▶273 / 304

- remove all non-live variables (and productions that contain them)

- remove all unreachable variables (and productions)

then all variables are useful

does not work the other way around ...

Exercise 4.53(c_i)., revisited $S \rightarrow ABC \mid BaB$ $A \rightarrow aA \mid BaC \mid aaa$ $B \rightarrow bBb \mid a$ $C \rightarrow CA \mid AC$

< ∃ →

unwanted in CFG:

– variables not used in successful derivations $S \Rightarrow^* x \in \Sigma^*$ sometimes unwanted:

 $-A \rightarrow B$ A, B variables unit productions [chain rules]

$$S \rightarrow A \mid aB$$
 $A \rightarrow B \mid bS$ $B \rightarrow bb \mid S$
 $S \Rightarrow A \Rightarrow B \Rightarrow S$

< ∃ →

unwanted in CFG:

– variables not used in successful derivations $S \Rightarrow^* x \in \Sigma^*$

 $-A \rightarrow B$ A, B variables unit productions [chain rules]

sometimes unwanted:

 $- A \rightarrow \Lambda$ A variable Λ -productions

 $S \rightarrow AB \mid aB$ $A \rightarrow BS \mid bS$ $B \rightarrow bb \mid \Lambda$ $S \Rightarrow AB \Rightarrow BSB \Rightarrow SB \Rightarrow S$

Normal form

Let I be length of a string in a derivation Let t be number of terminals in a string in a derivation

If G has no $\Lambda\text{-}\textsc{productions},$ and no unit productions, then \ldots

Let I be length of a string in a derivation Let t be number of terminals in a string in a derivation

If G has no Λ -productions, and no unit productions, then l + t strictly increases in every step of a derivation Proof ...

Hence, a string $x \in \Sigma^*$ can only be generated in derivations of at most 2|x| - 1 steps May be used to test if $x \in L(G)$

< ∃ >

Normal form

unwanted in CFG:

- variables not used in successful derivations $S \Rightarrow^* x \in \Sigma^*$
- $-A \rightarrow \Lambda$ A variable Λ -productions $-A \rightarrow B$ A, B variables unit productions [chain rules]

restricted CFG, with 'nice' form Chomsky normal form $A \rightarrow BC, A \rightarrow \sigma$ Greibach normal form (\boxtimes) $A \rightarrow \sigma B_1 \dots B_k$

Idea:

Example

 $\begin{array}{l} A \rightarrow BCDCB \\ B \rightarrow b \mid \Lambda \\ C \rightarrow c \mid \Lambda \\ D \rightarrow d \end{array}$

 $\rightarrow \equiv \rightarrow$

Definition

variable A is *nullable* iff $A \Rightarrow^* \Lambda$

Theorem

- if $A \to \Lambda$ then A is nullable - if $A \to B_1 B_2 \dots B_k$ and all B_i are nullable, then A is nullable

[M] Def 4.26 / Exercise 4.48

Construction

$$- N_0 = \varnothing - N_{i+1} = N_i \cup \{ A \in V \mid A \to \alpha \text{ in } P, \text{ with } \alpha \in N_i^*$$

$$N_1 = \{ A \in V \mid A \to \Lambda \text{ in } P \}$$

$$N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq V$$

there exists a k such that $N_k = N_{k+1}$
A is nullable iff $A \in \bigcup_{i>0} N_i = N_k$

Construction

- identify nullable variables
- for every production $A \rightarrow \alpha$ add $A \rightarrow \beta$,

where β is obtained from α by removing one or more nullable variables

- remove all Λ-productions

Grammar for {
$$a^i b^j c^k \mid i = j$$
 or $i = k$ }
 $S \rightarrow TU \mid V$
 $T \rightarrow aTb \mid \Lambda$
 $U \rightarrow cU \mid \Lambda$
 $V \rightarrow aVc \mid W$
 $W \rightarrow bW \mid \Lambda$

Example nullable

Grammar for {
$$a^i b^j c^k \mid i = j \text{ or } i = k$$
 }
 $S \rightarrow TU \mid V$
 $T \rightarrow aTb \mid \Lambda$
 $U \rightarrow cU \mid \Lambda$
 $V \rightarrow aVc \mid W$
 $W \rightarrow bW \mid \Lambda$

 $N_1 = \{T, U, W\}$, variables with Λ at right-hand side productions $N_2 = \{T, U, W\} \cup \{S, V\}$, variables with $\{T, U, W\}^*$ at rhs productions $N_3 = N_2 = \{T, U, W, S, V\}$, all variables found, no new

Automata Theory Context-Free Languages

add all productions, where (any number of) nullable variables are removed. . .

$$S \rightarrow TU \mid V$$

$$T \rightarrow aTb \mid \Lambda$$

$$U \rightarrow cU \mid \Lambda$$

$$V \rightarrow aVc \mid W$$

$$W \rightarrow bW \mid \Lambda$$

[M] Ex. 4.31

Example nullable, ctd

add all productions, where (any number of) nullable variables are removed

remove all A-productions...

[M] Ex. 4.31

Example nullable, ctd

add all productions, where (any number of) nullable variables are removed

remove all Λ -productions

$$S \rightarrow TU \mid V \mid T \mid U$$
$$T \rightarrow aTb \mid ab$$
$$U \rightarrow cU \mid c$$
$$V \rightarrow aVc \mid W \mid ac$$
$$W \rightarrow bW \mid b$$

[M] Ex. 4.31 Can we still derive { $a^i b^j c^k | i = j$ or i = k } ?

Theorem

For every CFG G there is CFG G_1 without Λ -productions such that $L(G_1) = L(G) - \{\Lambda\}.$

Proof $L(G) - \{\Lambda\} \subseteq L(G_1) \dots$ [M] Thm 4.27

< ∃ →

Theorem

For every CFG G there is CFG G_1 without Λ -productions such that $L(G_1) = L(G) - \{\Lambda\}$.

Proof $L(G) - \{\Lambda\} \subseteq L(G_1)$ $G = (V, \Sigma, S, P)$ Consider arbitrary $x \in L(G) - \{\Lambda\}$ $S \Rightarrow_G^* x$, i.e., $S \Rightarrow_G^n x$ for some $n \ge 1$ Needed: $S \Rightarrow_{G_1}^* x$ We prove more general statement: For all $A \in V$, $n \ge 1$ and $x \in \Sigma^* - \{\Lambda\}$, if $A \Rightarrow_G^n x$, then $A \Rightarrow_{G_1}^* x$, using induction on nBasis, n = 1: If $A \Rightarrow_G x$, then also $A \Rightarrow_{G_1} x$

Theorem

For every CFG G there is CFG G_1 without Λ -productions such that $L(G_1) = L(G) - \{\Lambda\}.$

Proof $L(G) - \{\Lambda\} \subseteq L(G_1)$ (continued)

Induction hypothesis: Let k > 1, and suppose that for all $A \in V$, n < kand $x \in \Sigma^* - \{\Lambda\}$, if $A \Rightarrow_G^n x$, then $A \Rightarrow_G^* x$ Induction step: Consider $A \Rightarrow_{C}^{k+1} x$ then $A \Rightarrow_G X_1 X_2 \dots X_m \Rightarrow_G^k x = x_1 x_2 \dots x_m$, for some $m \ge 1$ and $X_1, X_2, \ldots, X_m \in V \cup \Sigma$ Three cases: 1. X_i is terminal 2. X_i is variable and $x_i \neq \Lambda$ 3. X_i is variable and $x_i = \Lambda$ [M] Thm 4.27

Automata Theory Context-Free Languages

Removing unit productions

Idea:

Example

 $\begin{array}{l} A \rightarrow B \mid aCb \\ B \rightarrow C \mid Bb \mid Bc \\ C \rightarrow c \mid ABC \end{array}$

Removing unit productions

Assume Λ -productions have been removed

```
Variable B is A-derivable, if
```

- $B \neq A$, and
- $-A \Rightarrow^* B$ (using only unit productions)

Construction

$$- N_1 = \{ B \in V \mid B \neq A \text{ and } A \rightarrow B \text{ in } P \}$$

$$- N_{i+1} = N_i \cup \{ C \in V \mid C \neq A \text{ and } B \rightarrow C \text{ in } P, \text{ with } B \in N_i \}$$

$$\begin{split} &N_1 \subseteq N_2 \subseteq \cdots \subseteq V \\ \text{there exists a } k \text{ such that } N_k = N_{k+1} \\ &B \text{ is } A\text{-derivable iff } B \in \bigcup_{i \geq 1} N_i = N_k \end{split}$$

Automata Theory Context-Free Languages

₹ ≣ >291 / 304

Removing unit productions

Construction

- for each $A \in V$, identify A-derivable variables
- for every pair (A, B) where B is A-derivable, and every production $B \rightarrow \alpha$ add $A \rightarrow \alpha$
- remove all unit productions

Grammar for {
$$a^i b^j c^k \mid i = j \text{ or } i = k$$
 }
 $S \rightarrow TU \mid V \mid T \mid U$
 $T \rightarrow aTb \mid ab$
 $U \rightarrow cU \mid c$
 $V \rightarrow aVc \mid W \mid ac$
 $W \rightarrow bW \mid b$

 $\rightarrow \equiv \rightarrow$

Example unit productions

$$\begin{array}{l} S \rightarrow TU \mid V \mid T \mid U \\ T \rightarrow aTb \mid ab \\ U \rightarrow cU \mid c \\ V \rightarrow aVc \mid W \mid ac \\ W \rightarrow bW \mid b \end{array}$$

S-derivable: {V, T, U}, {V, T, U, W} V-derivable: {W}

New productions:

 $S \rightarrow aTb \mid ab$ $S \rightarrow cU \mid c$ $S \rightarrow aVc \mid W \mid ac$ $S \rightarrow bW \mid b$ $V \rightarrow bW \mid b$

Remove unit productions:

$$S \rightarrow TU \mid aTb \mid ab \mid cU \mid c \mid aVc \mid ac \mid bW \mid b$$

$$T \rightarrow aTb \mid ab$$

$$U \rightarrow cU \mid c$$

$$V \rightarrow aVc \mid ac \mid bW \mid b$$

$$W \rightarrow bW \mid b$$

< ∃ >

Definition

CFG in *Chomsky normal form* productions are of the form $-A \rightarrow BC$ variables A, B, C $-A \rightarrow \sigma$ variable A, terminal σ

Theorem

For every CFG G there is CFG G_1 in CNF such that $L(G_1) = L(G) - \{\Lambda\}$.

[M] Def 4.29, Thm 4.30

Construction ChNF

Construction

- 1 remove Λ -productions
- 2 remove unit productions
- (3) introduce variables for terminals $X_{\sigma}
 ightarrow \sigma$
- ④ split long productions

 $\begin{array}{cccc} A \rightarrow aBabA \\ \text{is replaced by} \\ X_a \rightarrow a & X_b \rightarrow b & A \rightarrow X_aBX_aX_bA \\ \\ A \rightarrow ACBA \\ \text{is replaced by} \\ A \rightarrow AY_1 & Y_1 \rightarrow CY_2 & Y_2 \rightarrow BA \\ \end{array}$ Mind the order

Automata Theory Context-Free Languages

Chomsky normal form

ChNF, example

Grammar for {
$$a^i b^j c^k \mid i = j \text{ or } i = k$$
 }
 $S \rightarrow TU \mid V$
 $T \rightarrow aTb \mid \Lambda$ $U \rightarrow cU \mid \Lambda$
 $V \rightarrow aVc \mid W$ $W \rightarrow bW \mid \Lambda$

After removing Λ -productions and unit productions, we obtain (see before) $S \rightarrow TU \mid aTb \mid ab \mid cU \mid c \mid aVc \mid ac \mid bW \mid b$ $T \rightarrow aTb \mid ab \qquad U \rightarrow cU \mid c$ $V \rightarrow aVc \mid ac \mid bW \mid b \qquad W \rightarrow bW \mid b$

Now introduce productions for the terminals...

Automata Theory Context-Free Languages

Chomsky normal form

ChNF, example

Grammar for {
$$a^i b^j c^k \mid i = j \text{ or } i = k$$
 }
 $S \rightarrow TU \mid V$
 $T \rightarrow aTb \mid \Lambda$ $U \rightarrow cU \mid \Lambda$
 $V \rightarrow aVc \mid W$ $W \rightarrow bW \mid \Lambda$

After removing Λ -productions and unit productions, we obtain (see before) $S \rightarrow TU \mid aTb \mid ab \mid cU \mid c \mid aVc \mid ac \mid bW \mid b$ $T \rightarrow aTb \mid ab$ $U \rightarrow cU \mid c$ $V \rightarrow aVc \mid ac \mid bW \mid b$ $W \rightarrow bW \mid b$

Now introduce productions for the terminals:

$$\begin{array}{l} X_{a} \rightarrow a \qquad X_{b} \rightarrow b \qquad X_{c} \rightarrow c \\ S \rightarrow TU \mid X_{a}TX_{b} \mid X_{a}X_{b} \mid X_{c}U \mid c \mid X_{a}VX_{c} \mid X_{a}X_{c} \mid X_{b}W \mid b \\ T \rightarrow X_{a}TX_{b} \mid X_{a}X_{b} \\ U \rightarrow X_{c}U \mid c \\ V \rightarrow X_{a}VX_{c} \mid X_{a}X_{c} \mid X_{b}W \mid b \\ W \rightarrow X_{b}W \mid b \end{array}$$

Automata Theory Context-Free Languages

Chomsky normal form

▲ ≣ ▶297 / 304

ChNF, example ctd.

Only a few productions that are too long: $S \rightarrow X_a T X_b \mid X_a V X_c$ $T \rightarrow X_a T X_b$ $V \rightarrow X_a V X_c$

Split these long productions...

Only a few productions that are too long: $S \rightarrow X_a T X_b \mid X_a V X_c$ $T \rightarrow X_a T X_b$ $V \rightarrow X_a V X_c$

Split these long productions:

$$\begin{array}{ll} S \to X_a Y_1 \mid X_a Y_2 \\ Y_1 \to T X_b & Y_2 \to V X_c \\ T \to X_a Y_3 \\ V \to X_a Y_4 \\ Y_3 \to T X_b & Y_4 \to V X_c \end{array}$$

Note that we can reuse Y_1 ($\approx Y_3$) and Y_2 ($\approx Y_4$) for two productions

Homework

Homework 3! (probably Wednesday)