
Dalia Papuc

Dalia Papuc
a











4 b A regular expression for L′
1 :

(a+ b+ c)∗(ba+ ca+ cb)(a+ b+ c)∗ + (a+ b)∗ + (a+ c)∗ + (b+ c)∗

If x ∈ {a, b, c}∗ is not in L1, there are two possibilities.

1. x contains a’s, b’s and c’s but not in the right order. Then x has to contain
a substring ba, ca or cb. Which would put the characters in the wrong
order. This is described by the first long term in the regular expression.

2. x contains not all of the three characters. Then x contains either only a’s
and b’s, a’s and c’s or b’s and c’s. This is described by the three last terms
of the regular expression.

5 a(i) No, L ̸⊆ L(G1). Because for example x = abbbbbc is in L, but not in
L(G). The b’s that ’belong to the a’s’, get put at the very end by G.

a(ii) No, L(G1) ̸⊆ L. Because for example x = abbbbcb is in L(G1), but not in
L. S → aSb → abbbCb → abbbbCcb → abbbbcb.

b(i) No, L ̸⊆ L(G2) because for example x = bbb is in L, but not in L(G2). In
G2 at least one a or c is generated through A or C.

b(ii) Yes, L(G2) ⊆ L

c(i) Yes, L ⊆ L(G3)

c(ii) Yes, L(G3) ⊆ L

1

Dalia Papuc
1

Dalia Papuc
1

Dalia Papuc

Dalia Papuc

Dalia Papuc

Dalia Papuc

Dalia Papuc
 =>

Dalia Papuc
 =>

Dalia Papuc
 =>

Dalia Papuc
 =>





Dalia Papuc

Dalia Papuc
AB



Dalia Papuc

Dalia Papuc
c



7 M1 reads in state 1 ai, and puts an A on the stack for every a it reads. In
state 2 the same amount of b’s are read as there were a’s. To count this, for
every b read an A get taken off the stack. When the stack is empty we read 3
more b’s through states 3, 4 and 5, this is the minimum amount of b′s needed
for a string in L.

Then we can accept in 5 but we can also read more b’s. We count these b′s by
putting B on the stack for every b read. Then we are allowed to read as many
c’s as there are B’s on the stack. If we have c’s left when the stack is empty
there are too many c’s and we go to state 7 which is non-accepting.

When the letters are in the wrong order the PDA crashes and the string is not
accepted.

1




