Exercise 3.7.

Find a regular expression corresponding to each of the following subsets of $\{a, b\}^{*}$.
a. The language of all strings containing exactly two a 's.
c. The language of all strings that do not end with $a b$.
e. The language of all strings not containing the substring $a a$.
f. The language of all strings in which the number of a 's is even.
g. The language of all strings containing no more than one occurrence of the string $a a$. (The string aaa should be viewed as containing two occurrences of aa.)

Exercise 3.7.

Find a regular expression corresponding to each of the following subsets of $\{a, b\}^{*}$.
i. The language of all strings containing both $b b$ and $a b a$ as substrings.
j. The language of all strings not containing the substring aaa.
k. The language of all strings not containing the substring bba.
I. The language of all strings containing both $a b a$ and $b a b$ as substrings.
\mathbf{m}. The language of all strings in which the number of a 's is even and the number of b 's is odd.

Exercise 3.1. In each case below, find a string of minimum length in $\{a, b\}^{*}$ not in the language corresponding to the given regular expression.
a. $b^{*}(a b)^{*} a^{*}$
b. $\left(a^{*}+b^{*}\right)\left(a^{*}+b^{*}\right)\left(a^{*}+b^{*}\right)$

Exercise 3.2. Consider the two regular expressions

$$
r=a^{*}+b^{*} \quad s=a b^{*}+b a^{*}+b^{*} a+\left(a^{*} b\right)^{*}
$$

a. Find a string corresponding to r but not to s.
b. Find a string corresponding to s but not to r.
c. Find a string corresponding to both r and s.
d. Find a string in $\{a, b\}^{*}$ corresponding to neither r nor s.

Exercise 3.10.
a. If L is the language corresponding to the regular expression $(a a b+b b a b a)^{*} b a b a$, find a regular expression corresponding to $L^{r}=\left\{x^{r} \quad \mid x \in L\right\}$.
b. Using the example in part (a) as a model, give a recursive definition (based on Definition 3.1) of the reverse e^{r} of a regular expression e.
c. Show that for every regular expression e, if the language L corresponds to e, then L^{r} corresponds to e^{r}.

Exercise 3.41. For each of the following regular expressions, draw an NFA accepting the corresponding language, so that there is a recognizable correspondence between the regular expression and the transition diagram.
e. $\left(a^{*} b b\right)^{*}+b b^{*} a^{*}$

Exercise 3.42. For part (e) of Exercise 3.41, draw the NFA that is obtained by a literal application of Kleene's theorem, without any simplifications.

Exercise 3.51. Use the algorithm of Brzozowski and McCluskey to find a regular expression corresponding to the FA below.
a.

