Exercise 2.27.

Describe decision algorithms to answer each of the following questions.
a. Given two FAs M_{1} and M_{2}, are there any strings that are accepted by neither?
d. Given an FA M accepting a language L, and a string x, is x a prefix of an element of L ?
g. Given two FAs M_{1} and M_{2}, is $L\left(M_{1}\right) \subseteq L\left(M_{2}\right)$?

Exercise 2.13.
For the FA pictured below, show that there cannot be any other FA with fewer states accepting the same language.

Exercise 2.17.

Let L be the language $A n B n=\left\{a^{n} b^{n} \quad \mid n \geq 0\right\}$.
a. Find two distinct strings x and y in $\{a, b\}^{*}$ that are not L distinguishable.
b. Find an infinite set of pairwise L-distinguishable strings.

Exercise 2.15.

Suppose L is a subset of $\{a, b\}^{*}$.
If x_{0}, x_{1}, \ldots is a sequence of distinct strings in $\{a, b\}^{*}$, such that for every $n \geq 0, x_{n}$ and x_{n+1} are L-distinguishable, does it follow that the strings x_{0}, x_{1}, \ldots are pairwise L-distinguishable?

Either give a proof that it does follow, or find an example of a language L and strings x_{0}, x_{1}, \ldots that represent a counterexample.

Exercise 2.21. For each of the following languages $L \subseteq\{a, b\}^{*}$, show that the elements of the infinite set $\left\{a^{n} \mid n \geq 0\right\}$ are pairwise L-distinguishable.
a. $L=\left\{a^{i} b a^{2 i} \mid i \geq 0\right\}$
b. $L=\left\{a^{i} b^{j} a^{k} \mid k>i+j\right\}$
d. $L=\left\{a^{i} b^{j} \mid j\right.$ is a multiple of $\left.i\right\}$
e. $L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)<2 n_{b}(x)\right\}$
f. $L=\left\{x \in\{a, b\}^{*} \mid\right.$ no prefix of x has more b 's than a 's $\}$
h. $L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$

