Exercise 2.27.

Describe decision algorithms to answer each of the following questions.

- **a.** Given two FAs M_1 and M_2 , are there any strings that are accepted by neither?
- **d.** Given an FA M accepting a language L, and a string x, is x a prefix of an element of L?
- **g.** Given two FAs M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?

Exercise 2.13.

For the FA pictured below, show that there cannot be any other FA with fewer states accepting the same language.

Exercise 2.17.

Let *L* be the language $AnBn = \{a^nb^n \mid n \ge 0\}$.

a. Find two distinct strings x and y in $\{a, b\}^*$ that are not L-distinguishable.

b. Find an infinite set of pairwise *L*-distinguishable strings.

Exercise 2.15.

Suppose L is a subset of $\{a, b\}^*$.

If x_0, x_1, \ldots is a sequence of distinct strings in $\{a, b\}^*$, such that for every $n \ge 0$, x_n and x_{n+1} are *L*-distinguishable, does it follow that the strings x_0, x_1, \ldots are pairwise *L*-distinguishable?

Either give a proof that it does follow,

or find an example of a language L and strings x_0, x_1, \ldots that represent a counterexample.

Exercise 2.21. For each of the following languages $L \subseteq \{a, b\}^*$, show that the elements of the infinite set $\{a^n \mid n \ge 0\}$ are pairwise *L*-distinguishable.

a.
$$L = \{a^i b a^{2i} \mid i \ge 0\}$$

b.
$$L = \{a^i b^j a^k \mid k > i + j\}$$

d.
$$L = \{a^i b^j \mid j \text{ is a multiple of } i\}$$

e.
$$L = \{x \in \{a, b\}^* \mid n_a(x) < 2n_b(x)\}$$

f. $L = \{x \in \{a, b\}^* \mid \text{ no prefix of } x \text{ has more } b \text{'s than } a \text{'s } \}$

h. $L = \{ww \mid w \in \{a, b\}^*\}$