Exercise 1.36.

(a) Consider the language L of all strings of a 's and b 's that do not end with b and do not contain the substring $b b$. Find a finite language S such that $L=S^{*}$.
(b) Show that there is no language S such that S^{*} is the language of all strings of a 's and b 's that do not contain the substring bb.

Exercise 1.32.

For a finite language L, let $|L|$ denote the number of elements of L. For example, $|\{\Lambda, a, a b a b b\}|=3$. This notation has nothing to do with the length $|x|$ of a string x.
The statement $\left|L_{1} L_{2}\right|=\left|L_{1}\right|\left|L_{2}\right|$ says that the number of strings in the concatenation $L_{1} L_{2}$ is the same as the product of the two numbers $\left|L_{1}\right|$ and $\left|L_{2}\right|$.

Is this always true? If so, give reasons, and if not, find two finite languages $L_{1}, L_{2} \subseteq\{a, b\}^{*}$ such that $\left|L_{1} L_{2}\right| \neq\left|L_{1}\right|\left|L_{2}\right|$.

Exercise 1.33.

Let L_{1} and L_{2} be subsets of $\{a, b\}^{*}$. (b) Show that $L_{1}^{*} \cup L_{2}^{*} \subseteq\left(L_{1} \cup L_{2}\right)^{*}$.

Exercise 1.37.

Let L_{1}, L_{2} and L_{3} be languages over some alphabet Σ. In each case below, two languages are given. Say what the relationship is between them. (Are they always equal? If not, is one always a subset of the other?) Give reasons for your answers, including counterexamples if appropriate.
(a) $L_{1}\left(L_{2} \cap L_{3}\right)$ and $L_{1} L_{2} \cap L_{1} L_{3}$
(b) $L_{1}^{*} \cap L_{2}^{*}$ and $\left(L_{1} \cap L_{2}\right)^{*}$
(c) $L_{1}^{*} L_{2}^{*}$ and $\left(L_{1} L_{2}\right)^{*}$

Exercise 2.1. In each part below, draw an FA accepting the indicated language over $\{a, b\}$.
a. The language of all strings containing exactly two a 's.
f. The language of all strings in which the number of a 's is even.
g. The language of all strings in which both the number of a 's and the number of b 's is even.
g2. The language of all strings in which either the number of a 's or the number of b 's is odd (or both).
j. The language of all strings containing both $b b$ and $a b a$ as substrings.
k. The language of all strings containing both $a b a$ and $b a b$ as substrings.

Exercise 2.2.

For each of the FAs pictured in Fig. 2.43, give a simple verbal description of the language it accepts.
a. on the blackboard
d.

