From exercise class 10:

Exercise 5.16.

Show that if L is accepted by a PDA, then L is accepted by a PDA that never crashes (i.e., for which the stack never empties and no configuration is reached from which there is no move defined).

From lecture 10:

Stack in PDA contains symbols from certain alphabet.

Usual stack operations: pop, top, push

Extra possiblity: replace top element X by string α

$$
\begin{array}{ll}
\alpha=\wedge & \text { pop } \\
\alpha=X & \text { top } \\
\alpha=Y X & \text { push } \\
\alpha=\beta X & \text { push* } \\
\alpha=\ldots &
\end{array}
$$

Top element X is required to do a move!

From exercise class 10:

Exercise 5.17.

Show that if L is accepted by a PDA, then L is accepted by a PDA in which every move

* either pops something from the stack (i.e., removes a stack symbol without putting anything else on the stack);
* or pushes a single symbol onto the stack on top of the symbol that was previously on top;
* or leaves the stack unchanged.

Hence, each action on the stack due to a move in the PDA has one of the following forms:

* either X / \wedge (with $X \in \Gamma$),
* or $X / Y X$ (with $X, Y \in \Gamma$),
* or X / X (with $X \in \Gamma$).

From lecture 7:

Theorem 4.9.

If L_{1} and L_{2} are context-free languages over an alphabet Σ, then

$$
L_{1} \cup L_{2}, \quad L_{1} L_{2} \quad \text { and } L_{1}^{*}
$$

are also CFLs.

From exercise class 11:

Exercise 5.19.

Suppose M_{1} and M_{2} are PDAs accepting L_{1} and L_{2}, respectively. For both the languages $L_{1} L_{2}$ and L_{1}^{*}, describe a procedure for constructing a PDA accepting the language.

In each case, nondeterminism will be necessary. Be sure to say precisely how the stack of the new machine works; no relationship is assumed between the stack alphabets of M_{1} and M_{2}.

Answer begins with:
Let $M_{1}=\left(Q_{1}, \Sigma, \Gamma_{1}, q_{01}, Z_{01}, A_{1}, \delta_{1}\right)$
and let $M_{2}=\left(Q_{2}, \Sigma, \Gamma_{2}, q_{02}, Z_{02}, A_{2}, \delta_{2}\right)$.

Exercise 5.21.

Prove the converse of Theorem 5.28:
If there is a PDA $M=\left(Q, \Sigma, \Gamma, q_{0}, Z_{0}, A, \delta\right)$ accepting L by empty stack (that is, $x \in L$ if and only if ($\left.q_{0}, x, Z_{0}\right) \vdash^{*}(q, \wedge, \wedge)$ for some state q),
then there is a PDA M_{1} accepting L by final state (i.e., the ordinary way).

Exercise 5.34.

In each case below, you are given a CFG G and a string x that it generates.
Draw the nondeterministic bottom-up PDA $N B(G)$.

Trace a sequence of moves in $N B(G)$ by which x is accepted, showing at each step the stack contents and the unread input. Show at the same time the corresponding rightmost derivation of x (in reverse order) in the grammar. See Example 5.24 for a guide.
a. The grammar has productions $S \rightarrow S[S] \mid \wedge$ and $x=[][[]]$.

Exercise 5.30.

For a certain CFG G, the moves shown below are those by which the nondeterministic bottom-up PDA $N B(G)$ accepts the input aabbab. Each occurrence of \vdash^{*} indicates a sequence of moves constituting a reduction. Draw the derivation tree for aabbab that corresponds to this sequence of moves.

$$
\begin{aligned}
\left(q_{0}, a a b b a b, Z_{0}\right) & \vdash\left(q_{0}, a b b a b, a Z_{0}\right) \vdash\left(q_{0}, b b a b, a a Z_{0}\right) \\
& \vdash\left(q_{0}, b a b, b a a Z_{0}\right) \vdash^{*}\left(q_{0}, b a b, S a Z_{0}\right) \\
& \vdash\left(q_{0}, a b, b S a Z_{0}\right) \vdash^{*}\left(q_{0}, a b, S Z_{0}\right) \\
& \vdash\left(q_{0}, b, a S Z_{0}\right) \vdash\left(q_{0}, \wedge, b a S Z_{0}\right) \\
& \vdash^{*}\left(q_{0}, \wedge, S S Z_{0}\right) \vdash^{*}\left(q_{0}, \wedge, S Z_{0}\right) \\
& \vdash\left(q_{1}, \wedge, Z_{0}\right) \vdash\left(q_{2}, \wedge, Z_{0}\right)
\end{aligned}
$$

Exercise 5.32.

Lem M be the PDA below, accepting

$$
\text { Pal }=\left\{y \in\{a, b\}^{*} \mid y=y^{r}\right\}=\left\{x x^{r}, x a x^{r}, x b x^{r} \mid x \in\{a, b\}^{*}\right\}
$$

(by empty stack). Let $x=a b a b a$. Find a sequence of moves of M by which x is accepted, and give the corresponding leftmost derivation in the CFG obtained from M as in Theorem 5.29.

Exercise 5.35.

Let M be the PDA on the blackboard, accepting SimplePal by empty stack. Consider the simplistic approach to obtaining a CFG described in the discussion preceding Theorem 5.29. The states of M are ignored, the variables of the grammar are the stack symbols of M, and for every move that reads σ and replaces A on the stack by $B C \ldots D$, we introduce the production $A \rightarrow$ $\sigma B C \ldots D$.
a. Give all productions resulting from this approach.
b. Find a string $x \in\{a, b, c\}^{*}$ that is not accepted by M, but is generated by this CFG.

