
Uitslagen huiswerkopgave 1. . .

Automata Theory Context-Free Languages Regular operations 224 / 301

Regular operations and CFL

From lecture 7:

Using building blocks

Theorem

If L1, L2 are CFL, then so are L1 ∪ L2, L1L2 and L∗1 .

[M] Thm 4.9

Hence, CFL is closed onder union, concatenation, star

Automata Theory Context-Free Languages Regular operations 225 / 301

Closure

Regular languages are closed under
– Boolean operations (complement, union, intersection, minus)
– Regular operations (union, concatenation, star)
– Reverse (mirror)
– [inverse] Homomorphism

Automata Theory Context-Free Languages Regular operations 226 / 301

Non-context-free languages

Fact, proof follows →֒later

Theorem

the languages

– AnBnCn = { anbncn | n > 0 } and

– XX = {xx | x ∈ {a, b}∗ }

are not context-free

[M] E 6.3, E 6.4

AnBnCn is the intersection of two context-free languages
[M] E 6.10

The complement of both AnBnCn and XX is context-free.
[M] E 6.11

Hence, CFL is not closed under intersection, complement

Automata Theory Context-Free Languages Regular operations 227 / 301

Regular languages and CF grammars

S → S1 | S2 union
S → S1S2 concatenation
S → SS1 | Λ star

CFG for ∅. . .
CFG for {σ}. . .

Example

L = bba(ab)∗ + (ab + ba∗b)∗ba

[M] E 4.11

Automata Theory Context-Free Languages Regular grammars 228 / 301

Regular languages and CF grammars

S → S1 | S2 union
S → S1S2 concatenation
S → SS1 | Λ star

Example

L = bba(ab)∗ + (ab + ba∗b)∗ba

S → S1 | S2
S1 → S1ab | bba

S2 → TS2 | ba T → ab | bUb U → aU | Λ

[M] E 4.11

Automata Theory Context-Free Languages Regular grammars 229 / 301

above

We have seen constructions to apply the regular operations (union,
concatenation and star) to context-free grammars. These we can now
use to build CFG for regular expressions.

There is a better way to build CFG for regular languages. Use finite

automata, and simulate these using a very simple type of context-free

grammar. These simple grammars are called regular.

Regular languages and CF grammars

systematic approach

Example

S A B

a

b
a

b

b

a

Automata Theory Context-Free Languages Regular grammars 230 / 301

Regular languages and CF grammars

systematic approach

Example

S A B

a

b
a

b

b

a

axiom S initial state
S → bA | aS transitions
A→ bA | aB

B → bA | aS

B → Λ accepting state

Automata Theory Context-Free Languages Regular grammars 231 / 301

Definition

regular grammar (or right-linear grammar)
productions are of the form
– A→ σB variables A,B , terminal σ
– A→ Λ variable A

Theorem

A language L is regular,

if and only if there is a regular grammar generating L.

Proof. . .
[M] Def 4.13, Thm 4.14

Automata Theory Context-Free Languages Regular grammars 232 / 301

Expressions

4.4 Derivation trees and ambiguity

A derivation. . .

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (,)}

S ⇒ S+S ⇒ S+(S)⇒ S+(S∗S)⇒ S+(a∗S)⇒

a + (a ∗ S)⇒ a + (a ∗ a)

[M] E 4.2, Fig 4.15

Automata Theory Context-Free Languages Derivation trees and ambiguity 233 / 301

Leftmost derivation

Definition

A derivation in a context-free grammar is a leftmost derivation, if at each
step, a production is applied to the leftmost variable-occurrence in the
current string.
A rightmost derivation is defined similarly.

[M] D 4.16

derivation step α = α1Aα2 ⇒G α1γα2 = β for A→ γ ∈ P

The derivation step is leftmost iff α1 ∈ Σ
∗

We write α
ℓ
⇒ β

Automata Theory Context-Free Languages Derivation trees and ambiguity 234 / 301

Expressions

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (,)}

S ⇒ S+S ⇒ S+(S)⇒ S+(S∗S)⇒ S+(a∗S)⇒

a + (a ∗ S)⇒ a + (a ∗ a)

Derivation tree. . .
[M] E 4.2, Fig 4.15

Automata Theory Context-Free Languages Derivation trees and ambiguity 235 / 301

Expressions

S

S + S

a (S)

S * S

a a

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (,)}

S ⇒ S+S ⇒ S+(S)⇒ S+(S∗S)⇒ S+(a∗S)⇒

a + (a ∗ S)⇒ a + (a ∗ a)

Leftmost derivation. . .

[M] E 4.2, Fig 4.15

Automata Theory Context-Free Languages Derivation trees and ambiguity 236 / 301

Expressions

S

S + S

a (S)

S * S

a a

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (,)}

S ⇒ S+S ⇒ S+(S)⇒ S+(S∗S)⇒ S+(a∗S)⇒

a + (a ∗ S)⇒ a + (a ∗ a)

Leftmost derivation:
S

ℓ
⇒ S + S

ℓ
⇒ a + S

ℓ
⇒ a + (S)

ℓ
⇒ a + (S ∗ S)

ℓ
⇒

a + (a ∗ S)
ℓ
⇒ a + (a ∗ a)

[M] E 4.2, Fig 4.15

Automata Theory Context-Free Languages Derivation trees and ambiguity 237 / 301

Well-formed formula

ψ ::= p | (¬ψ) | (ψ∧ψ) | (ψ∨ψ) | (ψ→ ψ)

p

q p

q

r

¬

(¬p) ∧

((¬p)∧ q)

¬

(¬r)∨

(q ∨ (¬r))∧

(p ∧ (q ∨ (¬r)))→

(((¬p)∧ q)→ (p ∧ (q ∨ (¬r))))

[H&R] Fig 1.3

Automata Theory Context-Free Languages Derivation trees and ambiguity 238 / 301

Well-formed formula

S ::= p | q | r | (¬S) | (S ∧ S) | (S ∨ S) | (S → S)

parse tree vs. derivation tree2

p

q p

q

r

¬

∧

¬

∨

∧

→

S

p

S

q

S

p S

q S

r

S

¬

S

∧

S

¬

S

∨

S

∧

S

→()

() ()

()

()

()

2with all brackets explicit

Automata Theory Context-Free Languages Derivation trees and ambiguity 239 / 301

leftmost derivation ←→ derivation tree

Theorem

If G is a context-free grammar, then for every x ∈ L(G), these three

statements are equivalent:

1 x has more than one derivation tree

2 x has more than one leftmost derivation

3 x has more than one rightmost derivation

Proof. . .
[M] Thm 4.17

Automata Theory Context-Free Languages Derivation trees and ambiguity 240 / 301

Ambiguity

leftmost derivation ←→ derivation tree

Theorem

If G is a context-free grammar, then for every x ∈ L(G), these three

statements are equivalent:

1 x has more than one derivation tree

2 x has more than one leftmost derivation

3 x has more than one rightmost derivation

[M] Thm 4.17

Definition

A context-free grammar G is ambiguous, if for at least one x ∈ L(G), x
has more than one derivation tree (or, equivalently, more than one
leftmost derivation).

Otherwise: unambiguous [M] D 4.18

Automata Theory Context-Free Languages Derivation trees and ambiguity 241 / 301

Ambiguity (1)

S

S * S

aS + S

a a

S

S + S

a S * S

a a

Σ = {a,+, ∗, (,)}

S → a | S + S | S ∗ S | (S)

a + a ∗ a

S
ℓ
⇒ S ∗ S

ℓ
⇒ S + S ∗ S

ℓ
⇒ a + S ∗ S

ℓ
⇒

a + a ∗ S
ℓ
⇒ a + a ∗ a

S
ℓ
⇒ S+S

ℓ
⇒ a+S

ℓ
⇒ a+S∗S

ℓ
⇒ a+a∗S

ℓ
⇒

a + a ∗ a

leftmost derivation ←→ derivation tree

Automata Theory Context-Free Languages Derivation trees and ambiguity 242 / 301

Ambiguity (2)

S

S + S

aS + S

a a

S

S + S

a S + S

a a

Σ = {a,+, ∗, (,)}

S → a | S + S | S ∗ S | (S)

a + a + a

S
ℓ
⇒ S + S

ℓ
⇒ S + S + S

ℓ
⇒ a + S + S

ℓ
⇒

a + a + S
ℓ
⇒ a + a + a

S ⇒ S + S ⇒ S + S + S ⇒ a + S + S ⇒

a + a + S ⇒ a + a + a

Automata Theory Context-Free Languages Derivation trees and ambiguity 243 / 301

Ambiguity (2)

S

S + S

aS + S

a a

S

S + S

a S + S

a a

Σ = {a,+, ∗, (,)}

S → a | S + S | S ∗ S | (S)

a + a + a

S
ℓ
⇒ S + S

ℓ
⇒ S + S + S

ℓ
⇒ a + S + S

ℓ
⇒

a + a + S
ℓ
⇒ a + a + a

S ⇒ S + S ⇒ S + S + S ⇒ a + S + S ⇒

a + a + S ⇒ a + a + a

S
ℓ
⇒ S + S

ℓ
⇒ a + S

ℓ
⇒ a + S + S

ℓ
⇒

a + a + S
ℓ
⇒ a + a + a

leftmost derivation ←→ derivation tree

Automata Theory Context-Free Languages Derivation trees and ambiguity 244 / 301

above

This example is a little weird. In the derivation step

S + S ⇒ S + S + S we cannot really see which S has been rewritten.

(un)ambiguous grammars

Expr
ambiguous:

S → a | S + S | S ∗ S | (S)

[M] E 4.20

a + a ∗ a

unambiguous:

. . .

Automata Theory Context-Free Languages Derivation trees and ambiguity 245 / 301

(un)ambiguous grammars

Expr
ambiguous:

S → a | S + S | S ∗ S | (S)

[M] E 4.20

a + a ∗ a

unambiguous:

S → S + T | T

T → T ∗ F | F

F → a | (S)

[M] Thm 4.25

The proof of the unambiguity does not have to be known for the exam

Automata Theory Context-Free Languages Derivation trees and ambiguity 246 / 301

Expressions railroad diagram

Expression
Terme

+

Terme
Facteur

×

Facteur
Variable

(Expression)

Variable
X

Y

Z

http://math.et.info.free.fr/TikZ/index.html Chapitre 7

Automata Theory Context-Free Languages Derivation trees and ambiguity 247 / 301

Equal number

AeqB = { x ∈ {a, b}∗ | na(x) = nb(x) }

aaabbb, ababab, aababb, . . .

S → Λ | aB | bA

A→ aS | bAA A generates na(x) = nb(x) + 1

B → bS | aBB B generates na(x) + 1 = nb(x)

Derivation for aababb:

S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒ . . . (different options)

(1) aabB ⇒ aabaBB ⇒ aababSB ⇒ aababB ⇒ aababbS ⇒ aababb

(2) aabaBB ⇒ aababSB ⇒ aababB ⇒ aababbS ⇒ aababb

(2’) aabaBB ⇒ aabaBbS ⇒ aababSbS ⇒ aababSb ⇒ aababb

[M] E 4.8

Automata Theory Context-Free Languages Derivation trees and ambiguity 248 / 301

above

When a string has multiple variables, like aabSB in the above
example, then we are not forced to rewrite the first variable, we can
as well rewrite another one.
Thus we can do aabSB ⇒ aabB , but also aabSB ⇒ aabSaBB , for
instance.

below

In detail, two different derivation trees for the same string,
corresponding to derivations (1) and (2,2’) respectively, together with
two associated leftmost derivations.

Given these two trees we conclude the grammar is ambiguous.

Derivation tree & leftmost derivations

S1

a B2

a B3

b S4

Λ

B5

a B6

b S7

Λ

B8

b S9

Λ

S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒

aabB ⇒ aabaBB ⇒ aababSB ⇒

aababB ⇒ aababbS ⇒ aababb

S1

a B2

a B3

b S4

a B5

b S6

Λ

B7

b S8

Λ

S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒

aabaBB ⇒ aababSB ⇒ aababB ⇒

aababbS ⇒ aababb

Automata Theory Context-Free Languages Derivation trees and ambiguity 249 / 301

Dangling else

S → if (E) S | if (E) S else S | . . .

if (E) if (E) S else S

[M] E 4.19

Automata Theory Context-Free Languages Derivation trees and ambiguity 250 / 301

Dangling else

S → if (E) S | if (E) S else S | . . .

S

if (E) S

if (E) S else S

S

if (E) S else S

if (E) S

[M] E 4.19

Automata Theory Context-Free Languages Derivation trees and ambiguity 251 / 301

Dangling else

ambiguous:

S → if (E) S | if (E) S else S | A | . . .
unambiguous. . .

[M] E 4.19

Automata Theory Context-Free Languages Derivation trees and ambiguity 252 / 301

Dangling else

ambiguous:

S → if (E) S | if (E) S else S | A | . . .
unambiguous:

S → S1 | S2
S1 → if (E) S1 else S1 | A | . . . (matched)
S2 → if (E) S | if (E) S1 else S2 (open)

[M] E 4.19

Automata Theory Context-Free Languages Derivation trees and ambiguity 253 / 301

(un)ambiguous grammars

Balanced
ambiguous:

S → SS | (S) | Λ (more or less the definition of balanced)

unambiguous:

S → (S)S | Λ

[M] Exercise 4.45

Automata Theory Context-Free Languages Derivation trees and ambiguity 254 / 301

Exercise.

Let G be a context-free grammar with start variable S and the following
productions:

S → aSbS | bSaS | Λ

a. Show that L(G) = AEqB = {x ∈ {a, b}∗ | na(x) = nb(x)}

b. Is G ambiguous? Motivate your answer.

Automata Theory Context-Free Languages Derivation trees and ambiguity 255 / 301

Ambiguous

Some cf languages are inherently ambiguous

Ambiguity is undecidable
[M] Theorem 9.20

Automata Theory Context-Free Languages Derivation trees and ambiguity 256 / 301

