Pumping lemma for regular languages

From lecture 2:

Theorem

Suppose L is a language over the alphabet Σ. If L is accepted by a finite automaton M, and if n is the number of states of M, then
$\forall \quad$ for every $x \in L$ satisfying $|x| \geqslant n$
\exists there are three strings u, v, and w, such that $x=u v w$ and the following three conditions are true:
(1) $|u v| \leqslant n$,
(2) $|v| \geqslant 1$
and (3) for all $m \geqslant 0, u v^{m} w$ belongs to L

Example

$L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)>n_{b}(x)\right\}$ is not accepted by FA
[M] E 2.31

Unary languages

$L \subseteq\{a\}^{*}$

Example

$L=\left\{a^{i^{2}} \mid i \geqslant 0\right\}$ is not accepted by FA
$L=\{\Lambda, ~ a, ~$ aаaа, aаааааааа,$\ldots\}$
[M] E 2.32

Fun fact
$L^{4}=\{a\}^{*}$
Lagrange's four-square theorem

The length of $u v^{2} w$ cannot be a square: we will show it is strictly in between two consecutive squares.

$$
\begin{aligned}
& \left|u v^{2} w\right|=|z|+|v|>|z|=n^{2} . \\
& \left|u v^{2} w\right|=|z|+|v| \leqslant n^{2}+n<(n+1)^{2} .
\end{aligned}
$$

C programs

Let L be the set of legal C programs.
$x=\operatorname{main}()\{\{\{\ldots\}\}\}$
[M] E 2.33

Excercise 2.24

Prove the following generalization of the pumping lemma, which can sometimes make it unnecessary to break the proof into cases.

If L can be accepted by an FA, then there is an integer n
such that for any $x \in L$ with $|x| \geqslant n$
and for any way of writing x as $x_{1} x_{2} x_{3}$ with $\left|x_{2}\right|=n$, there are strings u, v and w such that
a. $x_{2}=u v w$
b. $|v| \geqslant 1$
c. For every $m \geqslant 0, x_{1} u v^{m} w x_{3} \in L$

Not a characterization

$L=\left\{a^{i} b^{j} c^{j} \mid i \geqslant 1\right.$ and $\left.j \geqslant 0\right\} \cup\left\{b^{j} c^{k} \mid j, k \geqslant 0\right\}$

- can be pumped, as in the pumping lemma
- is not accepted by FA
[M] E 2.39

Decision problems

Decision problem: problem for which the answer is 'yes' or 'no':
Given ..., is it true that ... ?

Given an undirected graph $G=(V, E)$, does G contain a Hamiltonian path?

Given a list of integers $x_{1}, x_{2}, \ldots, x_{n}$, is the list sorted?
decidable $\Longleftrightarrow \exists$ algorithm that decides

Decision problems

$M=\left(Q, \Sigma, \delta, q_{0}, A\right)$
membership problem $\quad x \in L(M)$?

Specific to M : Given $x \in \Sigma^{*}$, is $x \in L(M)$?

Arbitrary M : Given FA M with alphabet Σ, and $x \in \Sigma^{*}$, is $x \in L(M)$?

Decidable, easy
[M] E 2.34

Decision problems

Theorem

The following two problems are decidable

1. Given an $F A M$, is $L(M)$ nonempty?
2. Given an $F A M$, is $L(M)$ infinite?
[M] E 2.34

Decision problems

Lemma

Let M be an $F A$ with n states and let $L=L(M)$.
L is nonempty, if and only if L contains an element x with $|x|<n$ (at least one such element).

Decision problems

Theorem

The following two problems are decidable

1. Given an $F A M$, is $L(M)$ nonempty?
2. Given an $F A M$, is $L(M)$ infinite?
[M] E 2.34

Decision problems

```
Lemma
Let M be an FA with n states and let L=L(M).
L is infinite,
if and only if L contains an element x with }|x|\geqslant
(at least one such element).
cf. [M] Exercise 2.26
```


Decision problems

Lemma

Let M be an $F A$ with n states and let $L=L(M)$.
L is infinite,
if and only if L contains an element x with $|x| \geqslant n$ (at least one such element).

Lemma

Let M be an $F A$ with n states and let $L=L(M)$.
L contains an element x with $|x| \geqslant n$ (at least one such element) if and only if L contains an element x with $n \leqslant|x|<2 n$ (at least one such element).

- Give 2-state fA for each of the languages over $\{a, b\}$
- strings with even number of a's
- strings with at least one b
- Use the product construction to obtain a 4-state FA for the language of strings with even number of a 's or at least one b
- Investigate which states can be merged

x ends with aa

From lecture 1:

Example

$L_{1}=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with $\left.a a\right\}$

[M] E. 2.1

Same state, same future

Distinguishing strings

Definition

Let L be language over Σ, and let $x, y \in \Sigma^{*}$.
Then x, y are distinguishable wrt L (L-distinguishable),
if there exists $z \in \Sigma^{*}$ with

$$
x z \in L \text { and } y z \notin L \quad \text { or } \quad x z \notin L \text { and } y z \in L
$$

Such z distinguishes x and y wrt L.
Equivalent definition:
let $L / x=\left\{z \in \Sigma^{*} \mid x z \in L\right\}$
x and y are L-distinguishable if $L / x \neq L / y$.
Otherwise, they are L-indistinguishable.
The strings in a set $S \subseteq \Sigma^{*}$ are pairwise L-distinguishable, if for every pair x, y of distinct strings in S, x and y are L-distinguishable.

Definition independent of FAs
[M] D 2.20

From lecture 1:

Example

$L_{1}=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with $\left.a a\right\}$

$S=\{\Lambda, a, a a\}$

Example

$L_{1}=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with aa $\}$
L / x for $x=\Lambda, a, b, a a \ldots$

Theorem

Suppose $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ is an $F A$ accepting $L \subseteq \Sigma^{*}$.
If $x, y \in \Sigma^{*}$ are L-distinguishable, then $\delta^{*}\left(q_{0}, x\right) \neq \delta^{*}\left(q_{0}, y\right)$.
For every $n \geqslant 2$, if there is a set of n pairwise L-distinguishable strings in Σ^{*}, then Q must contain at least n states.

Hence, indeed: if $\delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, y\right)$, then x and y are not L-distinguishable.

Proof. . .
[M] Thm 2.21

From lecture 1:

Example

$L_{1}=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with $\left.a a\right\}$

$S=\{\Lambda, a, a a\}$

Distinguishing states

$L=\{a a, a a b\}^{*}\{b\}$
[M] E 2.22

Distinguishing states

$$
L=\{a a, a a b\}^{*}\{b\}
$$

[M] E 2.22

