Pumping lemma for regular languages

From lecture 2:

Theorem

Suppose L is a language over the alphabet Σ . If L is accepted by a finite automaton M, and if n is the number of states of M, then

```
∀ for every x ∈ L
satisfying |x| ≥ n
∃ there are three strings u, v, and w,
such that x = uvw and the following three conditions are true:
(1) |uv| ≤ n,
(2) |v| ≥ 1
∀ and (3) for all m ≥ 0, uv<sup>m</sup>w belongs to L
```

[M] Thm. 2.29

Example

 $L = \{ x \in \{a, b\}^* \mid n_a(x) > n_b(x) \}$ is not accepted by FA

[M] E 2.31

Automata Theory (Deterministic) Finite Automata

Pumping lemma

Unary languages

$$L \subseteq \{a\}^*$$

Example

 $L = \{ a^{i^2} \mid i \ge 0 \}$ is not accepted by FA

 $L = \{\Lambda, a, aaaa, aaaaaaaaaa, \ldots\}$ [M] E 2.32

Fun fact

 $L^4 = \{a\}^*$

Lagrange's four-square theorem

Automata Theory (Deterministic) Finite Automata

Pumping lemma

The length of uv^2w cannot be a square: we will show it is strictly in between two consecutive squares.

$$\begin{split} |uv^2w| &= |z| + |v| > |z| = n^2.\\ |uv^2w| &= |z| + |v| \leqslant n^2 + n < (n+1)^2. \end{split}$$

C programs

Let L be the set of legal C programs. $x = \min()\{\{\{...\}\}\}$ [M] E 2.33

Prove the following generalization of the pumping lemma, which can sometimes make it unnecessary to break the proof into cases.

```
If L can be accepted by an FA,
then there is an integer n
such that for any x \in L with |x| \ge n
and for any way of writing x as x_1x_2x_3 with |x_2| = n,
there are strings u, v and w such that
a. x_2 = uvw
b. |v| \ge 1
```

c. For every $m \ge 0$, $x_1 u v^m w x_3 \in L$

Not a characterization

- $L = \{ a^i b^j c^j \mid i \ge 1 \text{ and } j \ge 0 \} \cup \{ b^j c^k \mid j, k \ge 0 \}$
- can be pumped, as in the pumping lemma
- is not accepted by FA

[M] E 2.39

Decision problem: problem for which the answer is 'yes' or 'no': *Given* ..., *is it true that* ...?

Given an undirected graph G = (V, E), does G contain a Hamiltonian path?

Given a list of integers x_1, x_2, \ldots, x_n , is the list sorted?

decidable \iff \exists algorithm that decides

 $M = (Q, \Sigma, \delta, q_0, A)$ membership problem $x \in L(M)$?

Specific to *M*: Given $x \in \Sigma^*$, is $x \in L(M)$?

Arbitrary *M*: Given FA *M* with alphabet Σ , and $x \in \Sigma^*$, is $x \in L(M)$?

Decidable, easy

[M] E 2.34

Automata Theory (Deterministic) Finite Automata

Decision problems

Theorem

The following two problems are decidable

- 1. Given an FA M, is L(M) nonempty?
- 2. Given an FA M, is L(M) infinite?

[M] E 2.34

Lemma

Let M be an FA with n states and let L = L(M).

L is nonempty, if and only if *L* contains an element *x* with |x| < n(at least one such element).

 $\rightarrow \equiv \rightarrow$

Theorem

The following two problems are decidable

- 1. Given an FA M, is L(M) nonempty?
- 2. Given an FA M, is L(M) infinite?

[M] E 2.34

Lemma

```
Let M be an FA with n states and let L = L(M).
```

```
L is infinite,
if and only if L contains an element x with |x| \ge n
(at least one such element).
```

cf. [M] Exercise 2.26

< ≣ >

Lemma

```
Let M be an FA with n states and let L = L(M).
```

L is infinite, if and only if *L* contains an element *x* with $|x| \ge n$ (at least one such element).

Lemma

Let M be an FA with n states and let L = L(M).

L contains an element x with $|x| \ge n$ (at least one such element) if and only if L contains an element x with $n \le |x| < 2n$ (at least one such element).

- Give 2-state FA for each of the languages over {*a*, *b*}
 - strings with even number of a's
 - strings with at least one b
- Use the product construction to obtain a 4-state FA for the language of strings with even number of *a*'s or at least one *b*
- Investigate which states can be merged

 $\rightarrow \equiv \rightarrow$

x ends with aa

From lecture 1:

Example

 $L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$

[M] E. 2.1

Same state, same future

Distinguishing strings

Distinguishing strings

Definition

Let *L* be language over Σ , and let $x, y \in \Sigma^*$. Then x, y are *distinguishable* wrt *L* (*L*-*distinguishable*), if there exists $z \in \Sigma^*$ with $xz \in L$ and $yz \notin L$ or $xz \notin L$ and $yz \in L$

Such z distinguishes x and y wrt L.

Equivalent definition:

let $L/x = \{ z \in \Sigma^* \mid xz \in L \}$

x and y are *L*-distinguishable if $L/x \neq L/y$. Otherwise, they are *L*-indistinguishable.

The strings in a set $S \subseteq \Sigma^*$ are *pairwise L-distinguishable*, if for every pair x, y of distinct strings in S, x and y are *L*-distinguishable.

Definition independent of FAs

[M] D 2.20

Automata Theory (Deterministic) Finite Automata

x ends with aa

From lecture 1:

Example

 $L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$

 $S = \{\Lambda, a, aa\}$

Example

 $L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$

L/x for $x = \Lambda$, a, b, aa ...

Automata Theory (Deterministic) Finite Automata

Distinguishing strings

84 / 88

Theorem

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an FA accepting $L \subseteq \Sigma^*$.

If x, $y \in \Sigma^*$ are L-distinguishable, then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$.

For every $n \ge 2$, if there is a set of n pairwise L-distinguishable strings in Σ^* , then Q must contain at least n states.

Hence, indeed: if $\delta^*(q_0, x) = \delta^*(q_0, y)$, then x and y are not *L*-distinguishable.

Proof...

[M] Thm 2.21

x ends with aa

From lecture 1:

Example

 $L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$

 $S = \{\Lambda, a, aa\}$

 $\rightarrow \equiv \rightarrow$

Distinguishing states

L = {aa, aab}*{b} [M] E 2.22

Distinguishing states

$$L = \{aa, aab\}^* \{b\}$$

[M] E 2.22