
Pumping lemma for regular languages

From lecture 2:

Theorem

Suppose L is a language over the alphabet Σ. If L is accepted by a finite
automaton M, and if n is the number of states of M, then
∀ for every x ∈ L

satisfying |x | > n
∃ there are three strings u, v , and w,

such that x = uvw and the following three conditions are true:
(1) |uv | 6 n,
(2) |v | > 1

∀ and (3) for all m > 0, uvmw belongs to L

[M] Thm. 2.29
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Example

L = { x ∈ {a, b}∗ | na(x) > nb(x) } is not accepted by FA

[M] E 2.31
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Unary languages

L ⊆ {a}∗

Example

L = { ai
2
| i > 0 } is not accepted by FA

L = {Λ, a, aaaa, aaaaaaaaa, . . .}
[M] E 2.32

Fun fact

L4 = {a}∗

Lagrange’s four-square theorem
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The length of uv2w cannot be a square: we will show it is strictly in

between two consecutive squares.

|uv2w | = |z |+ |v | > |z | = n2.
|uv2w | = |z |+ |v | 6 n2 + n < (n + 1)2.



C programs

Let L be the set of legal C programs.
x = main(){{{...}}}
[M] E 2.33
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Excercise 2.24

Prove the following generalization of the pumping lemma, which can
sometimes make it unnecessary to break the proof into cases.

If L can be accepted by an FA,
then there is an integer n
such that for any x ∈ L with |x | > n
and for any way of writing x as x1x2x3 with |x2| = n,
there are strings u, v and w such that
a. x2 = uvw
b. |v | > 1
c. For every m > 0, x1uv

mwx3 ∈ L
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Not a characterization

L = { aibjc j | i > 1 and j > 0 } ∪ { bjck | j , k > 0 }

– can be pumped, as in the pumping lemma

– is not accepted by FA

[M] E 2.39
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Decision problems

Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given . . . , is it true that . . . ?

Given an undirected graph G = (V ,E ),
does G contain a Hamiltonian path?

Given a list of integers x1, x2, . . . , xn,
is the list sorted?

decidable ⇐⇒ ∃ algorithm that decides
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Decision problems

M = (Q,Σ, δ, q0,A)
membership problem x ∈ L(M)?

Specific to M: Given x ∈ Σ∗, is x ∈ L(M)?

Arbitrary M: Given FA M with alphabet Σ, and x ∈ Σ∗, is x ∈ L(M)?

Decidable, easy

[M] E 2.34
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Decision problems

Theorem

The following two problems are decidable
1. Given an FA M, is L(M) nonempty?
2. Given an FA M, is L(M) infinite?

[M] E 2.34
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Decision problems

Lemma

Let M be an FA with n states and let L = L(M).

L is nonempty,
if and only if L contains an element x with |x | < n
(at least one such element).
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Decision problems

Theorem

The following two problems are decidable
1. Given an FA M, is L(M) nonempty?
2. Given an FA M, is L(M) infinite?

[M] E 2.34
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Decision problems

Lemma

Let M be an FA with n states and let L = L(M).

L is infinite,
if and only if L contains an element x with |x | > n
(at least one such element).

cf. [M] Exercise 2.26
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Decision problems

Lemma

Let M be an FA with n states and let L = L(M).

L is infinite,
if and only if L contains an element x with |x | > n
(at least one such element).

Lemma

Let M be an FA with n states and let L = L(M).

L contains an element x with |x | > n (at least one such element)
if and only if L contains an element x with n 6 |x | < 2n
(at least one such element).
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Quiz

Give 2-state FA for each of the languages over {a, b}

strings with even number of a’s
strings with at least one b

Use the product construction to obtain a 4-state FA for the language
of strings with even number of a’s or at least one b

Investigate which states can be merged
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x ends with aa

From lecture 1:

Example

L1 = { x ∈ {a, b}∗ | x ends with aa }

q0 q1 q2

a

b

a
b

a

b

[M] E. 2.1
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Same state, same future

q0

δ∗(q0, x)

δ∗(q0, y)

x

y

δ
∗(q0, xz1) = δ

∗(q0, yz1)

z2

z3

z1
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Distinguishing strings

Definition

Let L be language over Σ, and let x , y ∈ Σ∗.
Then x , y are distinguishable wrt L (L-distinguishable),
if there exists z ∈ Σ∗ with

xz ∈ L and yz /∈ L or xz /∈ L and yz ∈ L
Such z distinguishes x and y wrt L.

Equivalent definition:
let L/x = { z ∈ Σ∗ | xz ∈ L }

x and y are L-distinguishable if L/x 6= L/y .
Otherwise, they are L-indistinguishable.

The strings in a set S ⊆ Σ∗ are pairwise L-distinguishable, if for every pair
x , y of distinct strings in S , x and y are L-distinguishable.

Definition independent of FAs

[M] D 2.20
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x ends with aa

From lecture 1:

Example

L1 = { x ∈ {a, b}∗ | x ends with aa }

q0 q1 q2

a

b

a
b

a

b

S = {Λ, a, aa}
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Example

L1 = { x ∈ {a, b}∗ | x ends with aa }

L/x for x = Λ, a, b, aa . . .
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Theorem

Suppose M = (Q,Σ, q0,A, δ) is an FA accepting L ⊆ Σ∗.

If x , y ∈ Σ∗ are L-distinguishable, then δ∗(q0, x) 6= δ∗(q0, y).

For every n > 2, if there is a set of n pairwise L-distinguishable strings in
Σ∗, then Q must contain at least n states.

Hence, indeed: if δ∗(q0, x) = δ∗(q0, y), then x and y are not
L-distinguishable.

Proof. . .

[M] Thm 2.21
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x ends with aa

From lecture 1:

Example

L1 = { x ∈ {a, b}∗ | x ends with aa }

q0 q1 q2

a

b

a
b

a

b

S = {Λ, a, aa}
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Distinguishing states

L = {aa, aab}∗{b}
[M] E 2.22
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Distinguishing states

L = {aa, aab}∗{b}

q0

p

t u

rs

a b

b

a

b

a ba

a, b

a, b

[M] E 2.22
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