Even/odd number of a 's/b's

2.1(g) All strings over $\{a, b\}$ in which both the number of a 's and the number of b 's is even.

2.1(g2) All strings over $\{a, b\}$ in which either the number of a 's or the number of b 's is odd (or both).

Formalism

```
Definition (FA)
[deterministic] finite automaton 5-tuple }M=(Q,\Sigma,\mp@subsup{q}{0}{},A,\delta)\mathrm{ ,
-Q finite set states;
- \Sigma finite input alphabet;
- q}\mp@subsup{q}{0}{}\inQ initial state
- A\subseteqQ accepting states;
- \delta:Q 人 \Sigma->Q transition function.
```

[M] D 2.11 Finite automaton
[L] D 2.1 Deterministic finite accepter, has 'final' states

Ingredients

Example

$L_{1}=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with aa $\}$

δ	a	b
q_{0}	q_{1}	q_{0}
q_{1}	q_{2}	q_{0}
q_{2}	q_{2}	q_{0}

[M] E. 2.1

Formalism

```
Definition (FA)
[deterministic] finite automaton 5-tuple }M=(Q,\Sigma,\mp@subsup{q}{0}{},A,\delta)\mathrm{ ,
-Q finite set states;
- \Sigma finite input alphabet;
- q}\mp@subsup{q}{0}{}\inQ initial state
- A\subseteqQ accepting states;
- \delta:Q 人 \Sigma->Q transition function.
```

[M] D 2.11 Finite automaton
[L] D 2.1 Deterministic finite accepter, has 'final' states

$$
\text { FA } M=\left(Q, \Sigma, q_{0}, A, \delta\right)
$$

Definition

extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$, such that
$-\delta^{*}(q, \Lambda)=q \quad$ for $q \in Q$
$-\delta^{*}(q, y \sigma)=\delta\left(\delta^{*}(q, y), \sigma\right) \quad$ for $q \in Q, y \in \Sigma^{*}, \sigma \in \Sigma$
[M] D 2.12 [L] p.40/1
Theorem
$q=\delta^{*}(p, w)$ iff there is a path in [the transition graph of] M from p to q with label w.
[L] Th 2.1

Extended transition function

$$
\begin{aligned}
& \delta^{*}\left(q_{0}, a a b b\right)=q_{0}: \\
& \delta^{*}\left(q_{0}, \Lambda\right)=q_{0} \\
& \delta^{*}\left(q_{0}, a\right)=\delta^{*}\left(q_{0}, \Lambda a\right)=\delta\left(\delta^{*}\left(q_{0}, \Lambda\right), a\right)=\delta\left(q_{0}, a\right)=q_{1} \\
& \delta^{*}\left(q_{0}, a a\right)=\delta\left(\delta^{*}\left(q_{0}, a\right), a\right)=\delta\left(q_{1}, a\right)=q_{2} \\
& \delta^{*}\left(q_{0}, a a b\right)=\delta\left(\delta^{*}\left(q_{0}, a a\right), b\right)=\delta\left(q_{2}, b\right)=q_{0} \\
& \delta^{*}\left(q_{0}, a a b b\right)=\delta\left(\delta^{*}\left(q_{0}, a a b\right), b\right)=\delta\left(q_{0}, b\right)=q_{0}
\end{aligned}
$$

Definition

Let $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ be an $F A$, and let $x \in \Sigma^{*}$. The string x is accepted by M if $\delta^{*}\left(q_{0}, x\right) \in A$.
The language accepted by $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ is the set $L(M)=\left\{x \in \Sigma^{*} \mid x\right.$ is accepted by $\left.M\right\}$
[M] D 2.14 [L] D 2.2

Intro: complement

From lecture 1:
$L_{2}=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with b and does not contain $\left.a a\right\}$

$$
\neg(P \wedge Q)=\neg P \vee \neg Q
$$

$L_{2}^{c}=\left\{x \in\{a, b\}^{*} \mid x\right.$ does not end with b or contains $\left.a a\right\}$

Complement, construction

Construction

FA $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$,
let $M^{c}=\left(Q, \Sigma, q_{0}, Q-A, \delta\right)$

Theorem
$L\left(M^{c}\right)=\Sigma^{*}-L(M)$

Proof. . .

Intro: combining languages

Example (Even number of a, and ending with b)

Might not be optimal

Even number of a and ending with b

Combining languages

FA $M_{i}=\left(Q_{i}, \Sigma, q_{i}, A_{i}, \delta_{i}\right) \quad i=1,2$

Product construction

construct fA $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ such that
$-Q=Q_{1} \times Q_{2}$
$-q_{0}=\left(q_{1}, q_{2}\right)$
$-\delta((p, q), \sigma)=\left(\delta_{1}(p, \sigma), \delta_{2}(q, \sigma)\right)$

- A as needed

Theorem (2.15 Parallel simulation)

- $A=\left\{(p, q) \mid p \in A_{1}\right.$ or $\left.q \in A_{2}\right\}$, then $L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$
$-A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \in A_{2}\right\}$, then $L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$
$-A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \notin A_{2}\right\}$, then $L(M)=L\left(M_{1}\right)-L\left(M_{2}\right)$
Proof. . .

Example: intersection 'and' (product construction)

not substring aa

ends with $a b$
[M] E 2.16

Example: intersection 'and' (product construction)

not substring a a

[M] E 2.16

Example: union, contain either $a b$ or $b b a$

[M] E. 2.18, see also \hookrightarrow subset construction

FI 1, mrt 2016
$L=\left\{w \in\{a, b\}^{*} \mid w\right.$ begint en eindigt met een a, en $|w|$ is even $\}$

Pumping lemma

[M] Fig. 2.28

Pumping lemma for regular languages

Regular language is language accepted by an FA.
Theorem
Suppose L is a language over the alphabet Σ. If L is accepted by a finite automaton M, and if n is the number of states of M, then
\forall for every $x \in L$
satisfying $|x| \geqslant n$
\exists there are three strings u, v, and w,
such that $x=u v w$ and the following three conditions are true:
(1) $|u v| \leqslant n$,
(2) $|v| \geqslant 1$
\forall and (3) for all $m \geqslant 0, u v^{m} w$ belongs to L

Pumping lemma for regular languages

In other words:

Theorem

$\forall \quad$ For every regular language L
\exists there exists a constant $n \geqslant 1$
such that
\forall for every $x \in L$ with $|x| \geqslant n$
\exists there exists a decomposition $x=u v w$
with (1) $|u v| \leqslant n$, and (2) $|v| \geqslant 1$
such that
(3) for all $m \geqslant 0, u v^{m} w \in L$
if $L=L(M)$ then $n=|Q|$.
[M] Thm. 2.29

Pumping lemma for regular languages

In other words:

Theorem

If L is a regular language, then
\exists there exists a constant $n \geqslant 1$
such that
\forall for every $x \in L$ with $|x| \geqslant n$
\exists there exists a decomposition $x=u v w$
with (1) $|u v| \leqslant n$, and (2) $|v| \geqslant 1$
such that
(3) for all $m \geqslant 0, u v^{m} w \in L$
if $L=L(M)$ then $n=|Q|$.
Introduction to Logic: $p \rightarrow q \Longleftrightarrow \neg q \rightarrow \neg p$

Pumping lemma for regular languages

Theorem

If
for every $n \geqslant 1$
there exists $x \in L$
with $|x| \geqslant n$
such that
\forall for every decomposition $x=u v w$
with (1) $|u v| \leqslant n$, and (2) $|v| \geqslant 1$
\exists (3) there exists $m \geqslant 0$,
such that
$u v^{m} w \notin L$
then L is not a regular language.

Applying the pumping lemma

Example

$L=\left\{a^{i} b^{i} \mid i \geqslant 0\right\}$ is not accepted by FA.
[M] E 2.30
Proof: by contradiction

We prove that the language $L=\left\{a^{i} b^{i} \mid i \geqslant 0\right\}$ is not regular, by contradiction.

Assume that $L=\left\{a^{i} b^{i} \mid i \geqslant 0\right\}$ is accepted by FA with n states. Take $x=a^{n} b^{n}$. Then $x \in L$, and $|x|=2 n \geqslant n$.
Thus there exists a decomposition $x=u v w$ such that $|u v| \leqslant n$ with v nonempty, and $u v^{m} w \in L$ for every m.
Whatever this decomposition is, v consists of a's only. Consider $m=0$. Deleting v from the string x will delete a number of a's. So $u v^{0} w$ is of the form $a^{n^{\prime}} b^{n}$ with $n^{\prime}<n$.
This string is not in L; a contradiction. ($m \geqslant 2$ would also yield contradiction)
So, L is not regular.

Applying the pumping lemma

Example

$L=\left\{a^{i} b^{i} \mid i \geqslant 0\right\}$ is not accepted by FA.
[M] E 2.30
Aeq $B=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=n_{b}(x)\right\}$
Same argument, or closure properties

Combining languages

FA $M_{i}=\left(Q_{i}, \Sigma, q_{i}, A_{i}, \delta_{i}\right) \quad i=1,2$

Product construction

construct fA $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ such that
$-Q=Q_{1} \times Q_{2}$
$-q_{0}=\left(q_{1}, q_{2}\right)$
$-\delta((p, q), \sigma)=\left(\delta_{1}(p, \sigma), \delta_{2}(q, \sigma)\right)$

- A as needed

Theorem (2.15 Parallel simulation)

- $A=\left\{(p, q) \mid p \in A_{1}\right.$ or $\left.q \in A_{2}\right\}$, then $L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$
$-A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \in A_{2}\right\}$, then $L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$
$-A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \notin A_{2}\right\}$, then $L(M)=L\left(M_{1}\right)-L\left(M_{2}\right)$
Proof. . .

[M] Sect 2.2

Exactly the same argument can be used (verbatim) to prove that $L=A e q B$ is not regular.

We can also apply closure properties of REG to see that AeqB is not regular, as follows.

Assume AeqB is regular. Then also $\mathrm{AnBn}=\mathrm{AeqB} \cap a^{*} b^{*}$ is regular, as regular languages are closed under intersection. This is a contradiction, as we just have argued that AnBn is not regular.
Thus, also AeqB is not regular.

Issues:

- Which n ? Can I just take $x=$ aababaabbab?
- Which x ? Some x may not yield a contradiction.
- Which decomposition $u v w$? Can I just take $u=a^{10}, v=a^{n-10}$, $w=b^{n}$?
- Which m ? Some m may not yield a contradiction.

