Even/odd number of a's/b's

2.1(g) All strings over $\{a, b\}$ in which both the number of a's and the number of b's is even.

2.1(g2) All strings over $\{a, b\}$ in which either the number of a's or the number of b's is odd (or both).

Formalism

Definition (FA)

[deterministic] finite automaton 5-tuple $M = (Q, \Sigma, q_0, A, \delta)$,

- Q finite set states;
- $-\Sigma$ finite input alphabet;
- $-q_0 \in Q$ initial state;
- $-A \subseteq Q$ accepting states;
- $-\delta: Q \times \Sigma \to Q$ transition function.
- U. W. Z W transition function.

[M] D 2.11 Finite automaton

[L] D 2.1 Deterministic finite accepter, has 'final' states

Ingredients

Example

$$L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$$

[M] E. 2.1

Formalism

Definition (FA)

[deterministic] finite automaton 5-tuple $M = (Q, \Sigma, q_0, A, \delta)$,

- Q finite set states;
- $-\Sigma$ finite input alphabet;
- $-q_0 \in Q$ initial state;
- $-A \subseteq Q$ accepting states;
- $-\delta: Q \times \Sigma \to Q$ transition function.

[M] D 2.11 Finite automaton

[L] D 2.1 Deterministic finite accepter, has 'final' states

FA $M = (Q, \Sigma, q_0, A, \delta)$

Definition

extended transition function $\delta^*: Q \times \Sigma^* \to Q$, such that

$$-\delta^*(q,\Lambda) = q$$
 for $q \in Q$

$$-\delta^*(q, y\sigma) = \delta(\delta^*(q, y), \sigma)$$
 for $q \in Q, y \in \Sigma^*, \sigma \in \Sigma$

[M] D 2.12 [L] p.40/1

Theorem

 $q = \delta^*(p, w)$ iff there is a path in [the transition graph of] M from p to q with label w.

[L] Th 2.1

Extended transition function

$$\delta^*(q_0, aabb) = q_0$$
:

 $\delta^*(q_0, \Lambda) = q_0$

$$\delta^*(q_0, a) = \delta^*(q_0, \Lambda a) = \delta(\delta^*(q_0, \Lambda), a) = \delta(q_0, a) = q_1$$
 $\delta^*(q_0, aa) = \delta(\delta^*(q_0, a), a) = \delta(q_1, a) = q_2$
 $\delta^*(q_0, aab) = \delta(\delta^*(q_0, aa), b) = \delta(q_2, b) = q_0$

 $\delta^*(q_0, aabb) = \delta(\delta^*(q_0, aab), b) = \delta(q_0, b) = q_0$

Definition

Let $M=(Q,\Sigma,q_0,A,\delta)$ be an FA, and let $x\in\Sigma^*$. The string x is *accepted* by M if $\delta^*(q_0,x)\in A$.

The *language accepted* by $M = (Q, \Sigma, q_0, A, \delta)$ is the set

$$L(M) = \{ \ x \in \Sigma^* \mid \ x \text{ is accepted by } M \ \}$$

[M] D 2.14 [L] D 2.2

Intro: complement

From lecture 1:

 $L_2 = \{ x \in \{a, b\}^* \mid x \text{ ends with } b \text{ and does not contain } aa \}$

$$\neg (P \land Q) = \neg P \lor \neg Q$$

 $L_2^c = \{ x \in \{a, b\}^* \mid x \text{ does not end with } b \text{ or contains } aa \}$

Complement, construction

Construction

FA
$$M = (Q, \Sigma, q_0, A, \delta),$$

let $M^c = (Q, \Sigma, q_0, Q - A, \delta)$

Theorem

$$L(M^c) = \Sigma^* - L(M)$$

Proof...

Intro: combining languages

Might not be optimal

Even number of a and ending with b

Combining languages

FA
$$M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)$$
 $i = 1, 2$

Product construction

construct FA $M = (Q, \Sigma, q_0, A, \delta)$ such that

- $-Q=Q_1\times Q_2$
- $-q_0=(q_1,q_2)$
- $-\delta(\ (p,q),\sigma)=(\ \delta_1(p,\sigma),\delta_2(q,\sigma)\)$
- A as needed

Theorem (2.15 Parallel simulation)

- $-A = \{(p, q) \mid p \in A_1 \text{ or } q \in A_2\}, \text{ then } L(M) = L(M_1) \cup L(M_2)$
- $-A = \{(p,q) \mid p \in A_1 \text{ and } q \in A_2\}, \text{ then } L(M) = L(M_1) \cap L(M_2)$
- $-A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) + L(M_2)$ $-A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2)$

Proof...

[M] Sect 2.2

Example: intersection 'and' (product construction)

ends with ab

[M] E 2.16

Example: intersection 'and' (product construction)

[M] E 2.16

Example: union, contain either ab or bba

[M] E. 2.18, see also \hookrightarrow subset construction

 $L = \{ w \in \{a, b\}^* \mid w \text{ begint en eindigt met een } a, \text{ en } |w| \text{ is even } \}$

Pumping lemma

[M] Fig. 2.28

Regular language is language accepted by an FA.

Theorem

Suppose L is a language over the alphabet Σ . If L is accepted by a finite automaton M, and if n is the number of states of M, then

- \forall for every $x \in L$ satisfying $|x| \geqslant n$
 - there are three strings u, v, and w,

such that x = uvw and the following three conditions are true:

- $(1) |uv| \leqslant n,$
- $(2) |v| \geqslant 1$
- \forall and (3) for all $m \ge 0$, $uv^m w$ belongs to L

[M] Thm. 2.29

In other words:

```
Theorem
    For every regular language L
    there exists a constant n \ge 1
       such that
    for every x \in L
       with |x| \ge n
    there exists a decomposition x = uvw
       with (1) |uv| \leq n,
       and (2) |v| \ge 1
       such that
   (3) for all m \ge 0, uv^m w \in L
```

if
$$L = L(M)$$
 then $n = |Q|$.

[M] Thm. 2.29

In other words:

```
Theorem
If L is a regular language, then
    there exists a constant n \ge 1
        such that
    for every x \in L
        with |x| \ge n
\exists there exists a decomposition x = uvw
        with (1) |uv| \leq n,
        and (2) |\mathbf{v}| \geqslant 1
        such that
    (3) for all m \ge 0, uv^m w \in L
```

if L = L(M) then n = |Q|.

Introduction to Logic: $p \rightarrow q \iff \neg q \rightarrow \neg p$

```
Theorem
   for every n \ge 1
    there exists x \in I
       with |x| \ge n
       such that
    for every decomposition x = uvw
       with (1) |uv| \leq n,
       and (2) |v| \ge 1
   (3) there exists m \ge 0,
       such that
       uv^m w \notin L
then L is not a regular language.
```

[M] Thm. 2.29

Applying the pumping lemma

Example

$$L = \{a^i b^i \mid i \geqslant 0\}$$
 is not accepted by FA.

[M] E 2.30

Proof: by contradiction

We prove that the language $L = \{a^i b^i \mid i \ge 0\}$ is not regular, by contradiction.

Assume that $L = \{a^i b^i \mid i \ge 0\}$ is accepted by FA with n states.

Take $x = a^n b^n$. Then $x \in L$, and $|x| = 2n \ge n$.

Thus there exists a decomposition x = uvw such that $|uv| \leq n$ with v nonempty, and $uv^m w \in L$ for every m.

Whatever this decomposition is, ν consists of a's only. Consider m=0. Deleting v from the string x will delete a number of a's. So uv^0w is of the form $a^{n'}b^n$ with n' < n.

This string is not in L; a contradiction. $(m \ge 2 \text{ would also yield})$ contradiction)

So, L is not regular.

Applying the pumping lemma

Example

$$L = \{a^i b^i \mid i \geqslant 0\}$$
 is not accepted by FA.

$$AeqB = \{x \in \{a,b\}^* \mid n_a(x) = n_b(x) \}$$

Same argument, or closure properties

Combining languages

FA
$$M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)$$
 $i = 1, 2$

Product construction

construct FA $M = (Q, \Sigma, q_0, A, \delta)$ such that

- $-Q=Q_1\times Q_2$
- $-q_0=(q_1,q_2)$
- $-\delta(\ (p,q),\sigma)=(\ \delta_1(p,\sigma),\delta_2(q,\sigma)\)$
- A as needed

Theorem (2.15 Parallel simulation)

- $-A = \{(p, q) \mid p \in A_1 \text{ or } q \in A_2\}, \text{ then } L(M) = L(M_1) \cup L(M_2)$
- $-A = \{(p,q) \mid p \in A_1 \text{ and } q \in A_2\}, \text{ then } L(M) = L(M_1) \cap L(M_2)$
- $A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) + L(M_2)$ - $A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2)$

Proof...

[M] Sect 2.2

Exactly the same argument can be used (verbatim) to prove that L = AeqB is not regular.

We can also apply closure properties of REG to see that AeqB is not regular, as follows.

Assume AeqB is regular. Then also AnBn = AeqB $\cap a^*b^*$ is regular, as regular languages are closed under intersection.

This is a contradiction, as we just have argued that AnBn is not regular.

Thus, also AeqB is not regular.

Issues:

- Which n? Can I just take x = aababaabbab?
- Which x? Some x may not yield a contradiction.
- Which decomposition *uvw*? Can I just take $u = a^{10}$, $v = a^{n-10}$, $w = b^n$?
- Which *m*? Some *m* may not yield a contradiction.